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Abstract. In this paper, we investigate sparse portfolio selection models with
a regularized lp-norm term (0 < p ≤ 1) and negatively bounded shorting con-

straints. We obtain some basic properties of several linear lp-sparse minimax

portfolio models in terms of the regularization parameter. In particular, we
introduce an l1-sparse minimax Sharpe ratio model by guaranteeing a positive

denominator with a pre-selected parameter and design a parametric algorithm

for finding its global solution. We carry out numerical experiments of linear
lp-sparse minimax portfolio models with 1200 stocks from Hang Seng Index,

Shanghai Securities Composite Index, and NASDAQ Index and compare their

performance with lp-sparse mean-variance models. We test the effect of the
regularization parameter and the negatively bounded shorting parameter on

the level of sparsity, risk, and rate of return respectively and find that portfo-

lios including fewer stocks of the linear lp-sparse minimax models tend to have
lower risks and lower rates of return. However, for the lp-sparse mean-variance

models, the corresponding changes are not so significant.

1. Introduction. In 1952, Markowitz [28] formulated the portfolio selection prob-
lem as a quadratic programming problem, which is known as the mean-variance
model. This quantitative framework has since then become the milestone in the
field of portfolio selection and remains the dominant technique in use today. In this
framework, two critical elements, return and risk, are expressed by the expected re-
turn and the variance of the portfolio. Given N securities with return vector (ȳj)N
and covariance matrix (Qij)N×N , the optimal portfolio of the mean-variance model
is the solution of the following linear constrained quadratic optimization problem

min
w1,...,wN

1

2

N∑
i=1

N∑
j=1

Qijwiwj

s.t.

N∑
j=1

ȳjwj ≥ G

(1)
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N∑
j=1

wj = 1,

where G is the required return in the investment. In addition, the constraint wj ≥ 0
is included if the short selling is prohibited in the investment.

The mean-variance model provides a quantitative way to seek the balance be-
tween return and risk and has been demonstrated to be effective in empirical studies
(see [12, 27, 30]). Many competent algorithms are developed to solve the mean-
variance model with parametric formulation, typically the critical line algorithm
(see [29]), which has been efficiently used to investigate large-scale portfolio prob-
lems (see [33, 34]). The active set method for multi-criteria convex quadratic pro-
gramming problems (see [18]) also substantially contributes to finding the efficient
frontier of the parametric mean-variance model. On the other hand, various risk
measures were proposed to replace the portfolio variance in the mean-variance model
and establish alternative portfolio selection rules. For example, the ones with linear
structure are representative. Sharpe [36] viewed the market responsiveness as the
risk measure and built a linear approximation of the mean-variance model. Af-
ter that, mean absolute deviation [24], minimum return [43], and l∞ function [6]
were introduced as new types of linear risk measure and were also proved to be
competitive.

In modern society, portfolios including many securities are not desirable, espe-
cially for large-scale investments or retail investors. Therefore, finding sparse opti-
mal portfolios becomes an essential issue for portfolio selection. The terminology
cardinality is also universally used in literature when discussing the sparse portfo-
lios (see [7,41]). The regularization method is a promising method for pursuing the
sparse portfolios under the mean-variance model. In particular, the target portfolio
is generated by the following lp-sparse (0< p≤ 1) mean-variance model

min
w1,...,wN

1

2

N∑
i=1

N∑
j=1

Qijwiwj + τ‖w‖p

s.t.

N∑
j=1

ȳjwj ≥ G

N∑
j=1

wj = 1,

(2)

which modifies the model (1) by adding τ‖w‖p. The term ‖w‖p := (
∑N
j=1 |wj |p)

1
p

is known as the lp norm or lp regularizer , and the regularization parameter τ
provides a tradeoff between sparsity and accuracy. The l1-sparse mean-variance
model has been demonstrated practical for promoting the sparsity of portfolios (see
[4,11,14]). The l1 regularizer has been widely adopted to seek sparsity for industrial
problems, such as image reconstruction, data analysis, and machine learning (see
[9, 13, 39]). When 0 < p < 1, Chen et al. [10] and Fastrich et al. [17] claimed that
sparse optimal portfolios can be obtained by solving the lp-sparse mean-variance
model. In addition, it was shown by Chartrand [8], Xu et al. [42], and Hu et
al. [20] that the use of lp norm rather than l1 norm produces more sparse solutions
for industrial problems, although the computation of the lp-sparse formulation is
relatively complicated. Apart from the regularization technique, other selection
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criteria can be applied to achieve sparse optimal portfolios based on the mean-
variance model. By considering nonnegativity constrained portfolios, Jagannathan
and Ma [21] obtained an optimal portfolio including only 24.1 stocks out of 500
stocks. Qi et al. [35] applied their portfolio selection model to 1800-stock problems,
and the minimal number of selected stocks can be 62.11. Woodside-Oriakhi et
al. [41] presented a series of heuristic algorithms for the cardinality constrained
mean-variance model, which in essence is a quadratic mixed-integer problem. As
indicated in their experiments, the proposed algorithms effectively generate the
efficient frontier under the condition that the number of stocks included is fixed.

To the best of our knowledge, research on the sparsity of portfolios mainly cen-
ters on the mean-variance model but absents from linear portfolio models. In this
paper, we take the minimax rule [43] (see more details in Section 2) for instance
to discover the linear portfolio models regularized by the lp (0 < p ≤ 1) norms.
For the regularized models, the tunable regularization parameter can be viewed as
a controller to adjust the level of sparsity and the space for short selling. Related
features or properties are analyzed for the better use of the sparse models. Corre-
spondingly, we also study the lp-sparse (0 < p ≤ 1) minimax models numerically.
Xu et al. [42] and Hu et al. [20] justified that, among lp (0 < p ≤ 1) regularizers,
the l 1

2
regularizer performs best. Thus, we take the l 1

2
-sparse portfolio model as the

representative of the lp-sparse (when 0 < p < 1) portfolio model. The benchmarks
we select in the numerical experiments are the equal-weighted rule, the l1-sparse
mean-variance model, and the l 1

2
-sparse mean-variance model. In order to compare

different sparse models, we observe their out-of-sample performances at the same
level of sparsity. We find that, compared with the l1-sparse minimax model, the
l 1
2
-sparse minimax model is more competitive when the level of sparsity is extremely

high. As resulting portfolios become less sparse, the performances of both models
are comparable.

On the other hand, we consider the l1-sparse Sharpe ratio model based on the
minimax rule. In the area of performance assessment, the Treynor index [40], Sharpe
index [37], and Jensen index [22] are the three most popular performance measures
to rank performances of portfolios or mutual fund managers. The Sharpe index ,
also known as the Sharpe ratio, was first put forward by Sharpe [37] as an extension

of the Treynor index. The classical Sharpe ratio was originally defined as
E(R)−Rf

σ(R) ,

where E(R) and σ(R) represent the expected value of return and the standard
deviation of return, which exactly are the return and risk in the mean-variance
model. And Rf stands for the risk-free return. On the basis of the Sharpe ratio, a
series of Sharpe-type ratios were constructed where alternative risk measures were
used to substitute the variance (i.e., the denominator of the classical Sharpe ratio),
e.g., Calmar ratio [44], Sortino ratio [38], Burke ratio [5], and Sterling ratio [32].
Apart from ranking performances, the Sharpe ratio is also employed as an objective
function of the portfolio optimization model (see [2, 16]). Likewise, we generalize
the Sharpe ratio maximization model based on the risk measure of the minimax
model [43] (we call it the minimax risk measure for simplicity) and study its l1-sparse
formulation. For the proper use of the generalized Sharpe ratio model, we modify
the minimax risk measure by adding a constant to keep the denominator positive.
To find a global solution of the (generalized) l1-sparse minimax Sharpe ratio model,
we develop a parametric algorithm, which extends the algorithm proposed by Konno
and Kuno [23].
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It’s worth noting that the nonnegative return is an underlying assumption for
the classical Sharpe ratio. Bacon [1] pointed out that the negative return makes
the Sharpe ratio difficult to interpret. In fact, a larger Sharpe ratio represents a
higher rank of the portfolio. However, a negative return generates a negative Sharpe
ratio, then results in a perverse ranking. Specifically, a larger not less variance is
preferable when the return is negative. The nonnegativity of return is also assumed
for the generalized Sharpe ratio based on the minimax risk measure. For a similar
reason, the denominator of the generalized Sharpe ratio should be positive. But
unfortunately, the value of the minimax risk measure is possibly negative. As
a result, it is infeasible to adopt the minimax risk measure as the denominator
directly. To overcome this difficulty, we propose a revised minimax risk measure
λ −Mp to replace the original −Mp (see (6)), where λ is a parameter such that
λ−Mp > 0. The function of risk measure is to rank the risk; in this sense, λ−Mp

is consistent with −Mp. Therefore, the revision is valid.
The main contributions of this paper are summarized as follows.

(i) We construct the lp-sparse (0 < p ≤ 1) minimax models and investigate their
mathematical properties.

(ii) We formulate the l1-sparse minimax Sharpe ratio model by guaranteeing a
positive denominator with a pre-selected parameter.

(iii) We develop a global optimization algorithm to solve the (generalized) non-
convex l1-sparse minimax Sharpe ratio model.

The rest of the paper is organized as follows. In Sections 2 and 3, we construct
and analyze the lp-sparse (0 < p ≤ 1) minimax models and the l1-sparse minimax
Sharpe ratio model, then follow numerical experiments in Section 4. Eventually,
the paper is concluded in Section 5.

2. The sparse minimax models. We observe N securities over T time periods
and let yjt represent the rate of return of security j in time period t. A portfolio is
denoted by a vector of weights wj (j = 1, 2, . . . , N), which stands for the percentage
of the budget invested in security j. Let ȳj be the average rate of return of security

j, i.e. ȳj = 1
T

∑T
t=1 yjt, then the feasible region of the portfolio model is given by

F :=
{
w := (w1, w2, . . . , wN ) :

N∑
j=1

ȳjwj ≥ G;

N∑
j=1

wj = 1; wj ≥ α, j = 1, . . . , N
}
,

where G is the minimum level of rate of return and α is the lower bound of the
portfolio. A security j is called an active security if wj 6= 0.

The minimax portfolio selection model proposed by Young [43], maximizing the
minimum return of the portfolio over all the time periods, is given as

max
w∈F

min
t=1,...,T

N∑
j=1

yjtwj ,

which is equivalent to

min
w∈F,Mp

−Mp s.t.

N∑
j=1

yjtwj ≥Mp, t = 1, . . . , T.

In general, from the theory of linear programming (see [31]), we know that the
sparsity level of optimal solutions to this model tends to be very low if α 6= 0, even
the number of non-active securities can be zero in many situations. Therefore, we
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add an lp (0 < p ≤ 1) norm in the objective function to seek a sparse optimal
portfolio.

We consider the following lp-sparse (0 < p ≤ 1) minimax model

min
w∈F,Mp

−Mp + τ‖w‖pp

s.t.

N∑
j=1

yjtwj ≥Mp, t = 1, . . . , T,
(3)

where ‖w‖p :=
(∑N

j=1 |wj |p
) 1

p

and τ(≥ 0) is a tunable parameter of the lp norm.

Unlike the mean-variance model, the minimax model requires a finite lower bound
condition, since the model may generate an infinite optimal value if α = −∞. But
for a finite α, the feasible region F is bounded, then the corresponding optimal value
is bounded. Therefore, we set α > −∞ to guarantee the validness of the problem (3).
Furthermore, when considering the l1-sparse minimax model, we restrict ourselves
on the case that α < 0, which means the limited short selling is allowed in the
investment; otherwise, the problem (3) will reduce to the original minimax model
in that ‖w‖1 = 1.

Here are remarks to discuss the parameter τ of the lp-sparse minimax models.

(i) Let
(
w(τ),Mp(τ)

)
denote the solution of the model (3) with a specific τ . Fol-

lowing Brodie et al. [4], we observe that an optimal solution of the lp-sparse
minimax model satisfies the following relation

(τ1 − τ2)
(∥∥w(τ2)

∥∥p
p
−
∥∥w(τ1)

∥∥p
p

)
≥ 0. (4)

Indeed, we have

Mp(τ1) + τ1
∥∥w(τ1)

∥∥p
p
≤Mp(τ2) + τ1

∥∥w(τ2)

∥∥p
p

=Mp(τ2) + τ2
∥∥w(τ2)

∥∥p
p

+ (τ1 − τ2)
∥∥w(τ2)

∥∥p
p

≤Mp(τ1) + τ2
∥∥w(τ1)

∥∥p
p

+ (τ1 − τ2)
∥∥w(τ2)

∥∥p
p

=Mp(τ1) + τ1
∥∥w(τ1)

∥∥p
p

+ (τ1 − τ2)
(∥∥w(τ2)

∥∥p
p
−
∥∥w(τ1)

∥∥p
p

)
.

Notice that two inequalities are obtained by the minimization of respective
optimal solutions. If we consider the lp-norm as an indicator of sparsity, the
inequality (4) indicates that a larger τ leads to a portfolio with a higher level
of sparsity (see Figures 3(a) and 4(a)).

(ii) Let w+ and w− denote the componentwise positive and negative parts of w,

respectively. When p = 1, by making use of the constraint
∑N
j=1 wj = 1, it

follows from the inequality (4) that

(τ1 − τ2)
(∥∥w−(τ2)

∥∥
1
−
∥∥w−(τ1)

∥∥
1

)
≥ 0. (5)

Noting
∑N
j=1 wj = ‖w+‖1 − ‖w−‖1 and ‖w‖1 = ‖w+‖1 + ‖w−‖1, we obtain

the relation ‖w(τ2)‖1 − ‖w(τ1)‖1 = 2
(∥∥w−(τ2)

∥∥
1
−
∥∥w−(τ1)

∥∥
1

)
. Hence, (5) holds

from (4). The inequality (5) demonstrates that, with a smaller τ , the portfolio
produced by (3) has more short selling stocks and that a nonnegative portfolio
may be obtained when τ is sufficiently large (see Figures 3(b) and 4(b)).
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3. The sparse minimax Sharpe ratio model. In this section, we extend the
classical Sharpe ratio to a generalized version based on the minimax risk measure
and consider the minimization of this modified Sharpe ratio plus an l1 norm. To
solve this l1-sparse model, a parametric algorithm is proposed as a generalization
of the algorithm introduced in [23].

3.1. The (generalized) l1-sparse minimax Sharpe ratio model. As the orig-
inal minimax risk measure −Mp can be negative, in this subsection, we consider
the following generalized l1-sparse minimax Sharpe ratio model

min
w,Mp

−
(∑N

j=1 ȳjwj − rf
)

λ−Mp
+ τ‖w‖1

s.t.

N∑
j=1

yjtwj ≥Mp, t = 1, . . . , T

N∑
j=1

wj = 1

wj ≥ α, j = 1, . . . , N,

(6)

where rf is the risk-free rate of return and λ is a parameter such that λ−Mp > 0.

Also, we assume that
∑N
j=1 ȳjwj−rf ≥ 0 subject to the above constraints. Relations

(4) and (5) still hold for the l1-sparse minimax Sharpe ratio model.

Excess Return

R
ev

is
ed

R
is

k

A(λ1) A(λ2)

B(λ1) B(λ2)

Figure 1. Different λ of (generalized) Sharpe ratio

The choice of λ may influence the final result. Figure 1 states a risk-return space.
Point A(λ1) represents the excess return of portfolio A and its corresponding risk
revised by λ1, and other points are denoted similarly. In this space, the value of the
Sharpe ratio is expressed by the slope of the point. As we can see from Figure 1,
under the selection of λ1, portfolio A is better than portfolio B in that the gradient
of A(λ1) is steeper than that of B(λ1); while in the situation with λ2, the result is
opposite. But we have to emphasize that no matter how λ is chosen, the revised
minimax risk measure remains the essence of the original, and the corresponding
optimal portfolio is reasonable on logic.
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3.2. The parametric algorithm. In this subsection, we introduce an algorithm to
find a global solution of the l1-sparse minimax Sharpe ratio model (6). To this end,
we study a generalization of the parametric algorithm proposed by Konno and Kuno
[23], which is to minimize the sum of a differentiable convex function and a linear
fractional function subject to linear inequality constraints. More specifically, we aim
to develop a parametric algorithm for the following nondifferentiable generalized
linear fractional programming problem

min
x

g(x)− cT1 x+ c10

cT2 x+ c20

s.t. x ∈ X =: {x ∈ Rn : A1x ≥ b1, A2x = b2},
(7)

where g : Rn → R ∪ {∞} is a convex but not necessarily differentiable function.
Moreover, c1, c2 ∈ Rn, c10, c20 ∈ R, A1 ∈ Rp×n, A2 ∈ Rq×n, b1 ∈ Rp, and b2 ∈ Rq
are given parameters of the problem (7). We assume that the feasible region X is
non-empty and bounded; for any x ∈ X, it holds that

cT1 + c10 ≥ 0, cT2 + c20 > 0.

Consider the following auxiliary problem of the parametric algorithm

min
x,ξ

g(x)− 2ξ
√
cT1 x+ c10 + ξ2(cT2 x+ c20)

s.t. x ∈ X, ξ ≥ 0,
(8)

where ξ ∈ R is an auxiliary variable. For a fixed x = x̄, (8) is a convex quadratic
problem with respect to the single variable ξ, and the optimal value is attained at

ξ =

√
cT1 x̄+c10

cT2 x̄+c20
. The relation between (7) and (8) is given by Proposition 1.

Proposition 1. (Theorem 4.3, [23]) Let (x∗, ξ∗) be an optimal solution of (8).
Then x∗ is an optimal solution of (7).

Next, with a fixed ξ ≥ 0, we define P (ξ) as the optimal value of the following
problem

min
x

F (x, ξ) =: g(x)− 2ξ
√
cT1 x+ c10 + ξ2(cT2 x+ c20)

s.t. x ∈ X.
(9)

It is evident that F (·, ξ) is a convex function due to the concavity of
√
cT1 x+ c10.

According to Proposition 1, an optimal solution of (7) can be obtained by solving
(9) with ξ = ξ∗, where ξ∗ is a nonnegative number such that P(ξ∗) ≤ P(ξ) holds
for all ξ ≥ 0. Therefore, the main idea of the parametric algorithm is to solve (9)
over all ξ ≥ 0, then the solution corresponding to the smallest optimal value is an
optimal solution of (7). However, it is impossible to compute (9) when ξ →∞. As
a matter of fact, from the point of parametric programming, all the problems with
a sufficiently large ξ, say ξ ≥ ξmax, share the same optimal solutions (we prove it
in Proposition 2), say x∗max. Therefore, we only need to focus on [0, ξmax] instead
of [0,∞). In the rest of this subsection, we introduce a method to locate ξmax, and
the first stage is to find x∗max using Proposition 2.

Proposition 2. There exists ξmax ∈ R such that x∗max is an optimal solution of
the problem (8) for any ξ ≥ ξmax, where x∗max ∈ S∗ := arg min{g(x) : x ∈ S∗1} and

S∗1 := arg max{cT1 x : x ∈ S∗2}, S∗2 := arg min{cT2 x : x ∈ X}.
If S∗2 is a singleton, then x∗max = arg min{cT2 x : x ∈ X}.
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Proof. We only need to prove the following statement: there exists ξmax ∈ R, for
any ξ ≥ ξmax and x ∈ X\S∗, we have F (x, ξ) ≥ F (x∗max, ξ). To this end, we
consider three cases: (1) x ∈ S∗1\S∗; (2) x ∈ S∗2\S∗1 ; (3) x ∈ X\S∗2 . Note

F (x, ξ)− F (x∗max, ξ) = γ1(x)ξ2 − 2γ2(x)ξ + γ3(x),

where γ1(x) := cT2 x−cT2 x∗max, γ2(x) :=
√
cT1 x+ c10−

√
cT1 x

∗
max + c10, and γ3(x) :=

g(x)− g(x∗max).
For case (1), we have γ1(x) = γ2(x) = 0 and γ3(x) > 0, then F (x, ξ) ≥ F (x∗max, ξ)

holds for all ξmax ∈ R. For case (2), we have γ1(x) = 0 and γ2(x) < 0, then ξmax
satisfying F (x, ξ) ≥ F (x∗max, ξ) exists in that γ3(x) is bounded. For case (3), we
have γ1(x) > 0 and

F (x, ξ)− F (x∗max, ξ)

γ1(x)
=

(
ξ − γ2(x)

γ1(x)

)2

+
γ3(x)

γ1(x)
−
(
γ2(x)

γ1(x)

)2

.

Then, by the boundedness of γ2(x)
γ1(x) and γ3(x)

γ1(x) , there exists ξmax such that F (x, ξ) ≥
F (x∗max, ξ), for all x ∈ X\S∗2 and ξ ≥ ξmax. Therefore, the proof is completed.

We have to point out that, although Konno and Kuno [23] gave an approach
to finding x∗max of a generalized linear multiplicative programming problem, their
criteria may fail when the related problem has more than one solution.

Now, we introduce how to locate ξmax by the use of x∗max. When ξ ≥ ξmax, since
x∗max is an optimal solution of (9) and the linearity constraint qualification (LCQ)
is satisfied, then there exist λ := (λ1, . . . , λp) ∈ Rp and µ := (µ1, . . . , µq) ∈ Rq such
that 0 ∈ ∂g(x∗max)− c1√

cT1 x
∗
max + c10

ξ + c2ξ
2 −AT

1 λ−AT
2 µ

λi(A1x
∗
max − b1)i = 0, λi ≥ 0, i = 1, . . . , p,

(10)

where (A1x
∗
max − b1)i represents the ith entry of the vector A1x

∗
max − b1. Let λ̄

and Ā1 be the sub-vector and sub-matrix of λ and A1 corresponding to the active
constraints in A1x

∗
max ≥ b1 (i.e., the inequality is strict). Then (10) becomes

AT
0 ν ∈ ∂g(x∗max)− c1√

cT1 x
∗
max + c10

ξ + c2ξ
2,

where A0 =

[
Ā1

A2

]
, ν =

[
λ̄

µ

]
. Naturally, ξmax can be estimated via the following

system A
T
0 ν ∈ ∂g(x∗max)− c1√

cT1 x
∗
max + c10

ξ + c2ξ
2

λ̄ ≥ 0,

(11)

Solving (11) can be very expensive and complicated, especially for large-scale
problems. But fortunately, when A0 is a matrix of full-rank square, the process can
be much simplified. Under this assumption, (11) can be rearranged as{

ν ∈ Q0 − q1ξ + q2ξ
2

λ̄ ≥ 0,

where Q0 := {(AT
0 )−1} × ∂g(x∗max), q1 :=

(AT
0 )−1c1√

cT1 x
∗
max+c10

, and q2 := (AT
0 )−1c2. Note

that Q0 can be viewed as a vector, whose elements are sets rather than numbers.
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Let Q
(λ)
0 , q

(λ)
1 , and q

(λ)
2 be the sub-vectors of Q0, q1, and q2 corresponding to λ.

Then, the existence of λ implies

q
(λ)
0 − q(λ)

1 ξ + q
(λ)
2 ξ2 ≥ 0 and q

(λ)
0 = max{Q(λ)

0 }, (12)

where q
(λ)
0 = max{Q(λ)

0 } means q
(λ)
0 is a vector consisting of the maximums of all

sets in Q
(λ)
0 . Noting that the existence of λ is certain, we have q

(λ)
2 ≥ 0. That is,

the solution of (12) can be derived explicitly.
Here are remarks about the parametric algorithm.

(i) Konno and Kuno [23] directly utilized the generalized inverse matrix to solve
the system (11). However, this method may lose information and lead to a
wrong ξmax when A0 is not a matrix of full-rank square.

(ii) The assumption that A0 is a matrix of full-rank square is not very strict. For
instance, it is satisfied if S∗2 (c.f. Proposition 2) is a singleton and the Linear
independence constraint qualification (LICQ) holds at x∗max.

(iii) Every step of deriving ξmax is sufficient and necessary; thus, ξmax located by
the above process is exact for the problem.

Eventually, we conclude the parametric algorithm in 2 steps.

Step 1. Find x∗max through solving the optimization problems in Proposition 2
(see S∗, S∗1 , and S∗2 ) and ξmax through solving the system (11) or (12).

Step 2. If ξmax ≤ 0, then x∗max is the global solution of the problem (7); other-
wise, solve (9) over ξ ∈ [0, ξmax], then the solution x∗ corresponding to
the smallest optimal value is the global solution of the problem (7).

A basic method to search the minimal optimal value of the problem (9) over
[0, ξmax] is to discretize the interval. More precisely, we divide the interval [0, ξmax]
into many subdivisions and compute P (ξ) at every endpoint. When the subdivisions
are narrow enough, the resulting solution would be sufficiently close to the global
solution x∗.

4. Numerical experiments. In this section, we examine performances of the l1-
sparse minimax model, the l 1

2
-sparse minimax model and the l1-sparse minimax

Sharpe ratio model by using the weekly historical data of 1200 stocks from Hang
Seng Index, Shanghai Securities Composite Index, and NASDAQ Index (400 stocks
from each), during the period from January 1, 2005 to December 31, 2019. The

rate of return yjt is derived by yjt =
pj,t+1−pjt

pjt
, where pjt represents the price of

stock j in week t. The benchmarks are the l1-sparse and l 1
2
-sparse mean-variance

models (see (2)) and the equal-weighted rule (see [15]).
We translate the l1-sparse minimax model into a smooth formulation and use the

optimization toolbox (function ‘linprog’) in Matlab to solve the equivalent problem.
In virtue of the slackness variable uj(= |w|j), the problem (3) can be equivalently
transformed as a linear programming problem

min
w∈F,u,Mp

−Mp + τ

N∑
j=1

uj

s.t. − u ≤ w ≤ u
N∑
j=1

yjtwj ≥Mp, t = 1, . . . , T.



10 CHENCHEN ZU, XIAOQI YANG AND CARISA KWOK WAI YU

Notably, this is a parametric linear programming problem with respect to the pa-
rameter τ . According to [3], there exists a finite set of breakpoints 0 ≤ τ0 < τ1 <
. . . < τK < ∞ such that the optimal solution set keeps unchanged on any (open)
interval between two successive breakpoints, which is consistent with the figures in
Example 2. The computation of the l1-sparse mean-variance model is completed by
the CVX toolbox [19]. The iterative reweighted minimization method (see [25]) is
utilized to compute the l 1

2
-sparse minimax model and the l 1

2
-sparse mean-variance

model. The l1-sparse minimax Sharpe ratio model is solved by the parametric al-
gorithm proposed in Section 3.2. Initially, we test the computational time of five
models with τ fixed. For reliability, we target τ corresponding to 12-14 active stocks
for each model. The results are listed in Table 1.

Table 1. Computational time

l1-MM l 1
2
-MM l1-MV l 1

2
-MV l1-SR

0.56s 2.90s 24.35s 85.91s 225.33s

In Examples 1 and 2, we set the required rate of return, G, to be the average rate
of return of all the stocks. Each time period is taken as 1 week and the number of
periods is set as T = 11. The lower bound α of the portfolio is fixed at −0.2, which
means that the amount of short selling for each stock is limited under 20%.

Example 1. In the first experiment, we test the out-of-sample rate of return of the
l1-sparse minimax rule with different values of τ and compare it with that of the
equal-weighted rule, which has been shown to outperform many portfolio selection
rules (see [15]). As mentioned above, the number of time periods is 11. That is,
for the current period, data from the previous 11 periods are utilized to determine
parameters yjt, ȳj , and G. An optimal portfolio is then obtained by solving the
l1-sparse minimax model (3). The out-of-sample rate of return is computed using
the obtained optimal portfolio and the rate of return of the following period. For
example, the first out-of-sample rate of return is computed using the rate of return
of period 12, and the same procedure is repeated in the sequential periods.

Figure 2 plots the out-of-sample rates of return of the equal-weighted portfolio
and the l1-sparse minimax model with τ = 0.06, 0.07, and 0.15, respectively. We
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Figure 2. Rates of return with different τ
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observe that there are many similarities between the four curves in terms of the
trend. Specifically, their rates of return increase or decrease at the same time in most
periods. For the rates of return of the l1-sparse minimax model, we observe that
a small τ leads to evident fluctuations while a larger τ produces fewer variations.
This tendency is partly due to the relationship between short selling and the value
of τ (see (5)). According to [26], short selling is considered quite risky, thus causes
fluctuations.

Example 2. In this experiment, we select 37 blue chips from Hang Seng Index
to illustrate the variational tendency of sparsity and short selling of the l1-sparse
minimax model, the l 1

2
-sparse minimax model, and the l1-sparse minimax Sharpe

ratio model, together with two benchmark models – the l1-sparse and the l 1
2
-sparse

mean-variance models. For this purpose, we obverse their sparsity and short selling
with τ going through 0− 0.05. To see the influence of the parameter α, we conduct
experiments with α = −0.2 and α = −0.5, respectively. Figures 3(a) and 4(a)
show that, for all the five models, the number of nonzero stocks in the optimal
portfolio (i.e., the level of sparsity) decreases as the value of τ increases, which can
be explained by (4). The monotonicity of the l1-sparse minimax Sharpe ratio model
is less exact compared with those of the other two l1-sparse models. As the value
of τ goes up, the curve representing the l 1

2
-sparse minimax (resp. mean-variance)
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Figure 3. Performances with α = −0.2
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model reduces more dramatically than that of the l1-sparse minimax (resp. mean-
variance) model. The monotonic property is quite applicable and plays a critical
part in the following examples. More precisely, we can target optimal portfolios in
which the number of selected stocks is required within a specific range by taking
the value of τ over a finite and smaller interval.

Figures 3(b) and 4(b) demonstrate a similar monotonic trend for short selling,
which coincides with (5). Although an analogous inequality to (5) is not obtained
for the l 1

2
model, the relation ‖x‖pp = ‖x+‖pp+‖x−‖pp (0 < p ≤ 1) also partly explains

the coincident tendency between the level of sparsity and short selling. According
to Figures 3(a) and 3(b) (or Figures 4(a) and 4(b)), a more sparse portfolio, at
the same time, is a portfolio with a smaller number of negative-weighted stocks,
and a quite sparse portfolio may not include any short positions, as we mentioned
in remark (ii) in Section 2. Comparing Figure 3 and Figure 4, we find that the
selection of α does not influence the descent tendencies; and an extremely sparse
optimal portfolio can always be attained with different α. The only difference is
that the extremely sparse optimal portfolio is obtained at a smaller τ for the model
with a larger α. It is also noteworthy that in all the figures, graphs are piecewise
constant due to the parametric construction of sparse models; see related analysis
at the beginning of this section.

In fact, the 1200-stock problem shares the same monotonic trend. The only thing
that is changed is that, for the 1200-stock problem, the sparse minimax models vary
in a larger range, say 0−0.07, while the sparse mean-variance models vary in a much
smaller range, say 0− 10−8. This is attributed to the different orders of magnitude
of the objective functions. For the 37-stock problem, the orders of the minimax
and mean-variance models are both −1. However, for the 1200-stock problem, the
orders of magnitude are 1 and −11, respectively.

In the next example, we repeat the process mentioned in Example 1 over five
observation periods and compare five different sparse models. The required rate of
return G is taken to be the maximal rate of return of stocks. The level of short
selling α and the number of periods T remain unchanged while the out-of-sample
observation period is reset as 11 weeks. For example, data from period 713 − 723
are used to determine the optimal weights, and then we use them to compute the
out-of-sample rate of return of period 724− 734.

Since the same regularization parameter τ in different sparse models generally
corresponds to different levels of sparsity, there is little comparability between dif-
ferent sparse models with the same τ . A more practical method is to compare them
at the same level of sparsity. The comparison in the following example is completed
under this consideration.

Example 3. This experiment examines the out-of-sample performances of the l1-
sparse minimax model, the l 1

2
-sparse minimax model, and the l1-sparse minimax

Sharpe ratio model under five levels of sparsity (see the last five columns of Tables
2(a) to 2(e)), from period 699−709 to period 703−713. The l1-sparse and l 1

2
-sparse

mean-variance models (see (2)) are considered to be benchmarks in this example.
The level of sparsity, say 11 − 20, means the number of active stocks is between
11 and 20, which can be achieved by adjusting the value of τ (see Example 2).
However, in general, more than one portfolios fall into the target level of sparsity.
For this situation, the smallest risk of these portfolios and its corresponding rate
of return, Sharpe ratio, and number of short selling stocks are considered. If the
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portfolio with the minimal risk is still not unique, we select one with the maximal
rate of return.

Table 2. Performances of different sparse models

(a). l1-sparse minimax model

(b). l 1
2
-sparse minimax model

(c). l1-sparse mean-variance model

(d). l 1
2
-sparse mean-variance model

(e). l1-sparse minimax Sharpe ratio model

In Tables 2(a) to 2(e), R, RiskMM/RiskMV, SRMM/SRMV, and S represent the
out-of-sample rate of return, the out-of-sample risk, the out-of-sample Sharpe ratio,
and the number of short selling stocks. Related results of the equal-weighted rule
is also presented for reference. The equal-weighted rule outperforms all the sparse
models in terms of the Sharpe ratio due to its extremely small risk. On the contrary,
the rates of return of five sparse models are more favorable than those of the equal-
weighted strategy. From Tables 2(a), 2(b), and 2(e), we observe that, for all the
sparse minimax models, a more sparse optimal portfolio tends to have a lower risk
and a lower rate of return. However, the changes of risk and rate of return are not
so significant for the l1-sparse and l 1

2
-sparse mean-variance models.
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Next, we compare the l1-sparse minimax model and the l 1
2
-sparse minimax model.

When the level of sparsity is extremely high, i.e., with 11 − 20 active stocks, the
l 1
2
-sparse minimax rule is better than the l1-sparse minimax rule, both in the aspect

of the rate of return and Sharpe ratio. When the optimal portfolios are less sparse,
i.e., with 41 − 50 or 51 − 60 active stocks, both models perform identically. That
is, the l 1

2
-sparse minimax model would be a desirable choice for investors who seek

extremely sparse portfolios, while the l1 formulation is more beneficial to those who
prefer less sparse portfolios due to its computational simplicity (see Table 1). For
the l1-sparse and l 1

2
-sparse mean-variance models, we do not observe superiorities

of the l 1
2
-sparse model. As a whole, their out-of-sample performances appear to be

commensurate for all levels of sparsity.
Remarkably, the Sharpe ratios of the minimax model and mean-variance model

are not comparable in that they are based on their own, but the values of distinct
risk measures are not comparable. Therefore, the only performance measure for
comparing the sparse minimax models and sparse mean-variance models is the out-
of-sample rate of return. From Tables 2(a) and 2(c) (resp. Tables 2(b) and 2(d)),
we find that the optimal portfolios of the l1-sparse (resp. l 1

2
-sparse) minimax model

tend to achieve higher rates of return than those of the l1-sparse (resp. l 1
2
-sparse)

mean-variance model. For the l1-sparse minimax model and the l1-sparse minimax
Sharpe ratio model, Tables 2(a) and 2(e) show that two models perform similarly.
Although the computation of the l1-sparse minimax model is much easier, the l1-
sparse minimax Sharpe ratio model still would be a good choice for investors who
do not have the desired return in advance.

Table 3. Performances with different α

We also conduct the above experiment with α = −0.02,−0.05, and −0.5, respec-
tively. With a larger level of short selling, we observe that higher rates of return
and Sharpe ratios are obtained for all the models and that the risks of three sparse
minimax models increase. However, the risks of two sparse mean-variance models
are stable with different values of α. The results of period 702 − 712 with 11 − 20
active stocks are listed in Table 3 as the representative.

5. Conclusion. In this paper, we considered the lp-sparse (0 < p ≤ 1) linear port-
folio models and took the minimax selection rule (see [43]) as the representative
to discover their properties and numerical performances. On the other hand, we
constructed the l1-sparse minimax Sharpe ratio model based on a modified minimax
risk measure. To overcome the computational difficulty of the l1-sparse minimax
Sharpe ratio model, we extended the parametric algorithm in [23] to a more general
framework. In numerical experiments, we found all sparse minimax models are ef-
ficient for promoting the sparsity of the optimal portfolios. The l 1

2
-sparse minimax

model is advantageous when the investor requires an extremely sparse portfolio;
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while the l1-sparse minimax model is favorable for investment with a less strict re-
quirement for sparsity. For the l1-sparse minimax Sharpe ratio model, it is preferred
when the desired return is not given in advance.
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