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a b s t r a c t

Due to the error-prone nature of garment manufacturing operations, it is challenging to guarantee the quality

of garments. Previous research has been done to apply fuzzy association rule mining to determine process

settings for improving the garment quality. The relationship between process parameters and the finished

quality is represented in terms of rules. This paper enhances the application by encoding the rules into

variable-length chromosomes for optimization with the use of a novel genetic algorithm (GA), namely the

slippery genetic algorithm (sGA). Inspired by the biological slippage phenomenon in DNA replication, sGA

allows changes to the chromosome lengths by insertion and deletion. During rule optimization, different pa-

rameters can be inserted to or removed from a rule, increasing the diversity of the solutions. In this paper, a

slippery genetic algorithm-based process mining system (sGAPMS) is developed to optimize fuzzy rules with

the aim of facilitating a comprehensive quality assurance scheme in the garment industry. The significance of

this paper includes the development of a novel variable-length GA mechanism and the hybridization of fuzzy

association rule mining and variable-length GAs. Though the capability of conventional GA in rule optimiza-

tion has been proven, the diversity in the population is inherently limited by the fixed chromosome length.

Motivated by this phenomenon, the sGA suggested in this paper allows various parameters to be considered

in a rule, improving the diversity of the solutions. A case study is conducted in a garment manufacturing

company to evaluate the sGAPMS. The results illustrate that better quality assurance can be achieved after

rule optimization.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

In view of improved standards of living, customers nowadays are

having higher expectations on products during purchasing. To remain

competitive in the market, manufacturers are urged to improve their

product quality while at the same time to lower the costs and in-

crease the speed to market. Nevertheless, there is a common trade-

off between product quality and production efficiency. Some man-

ufacturers tend to increase the production efficiency to meet the

demand, causing adverse impacts on the resultant product quality.

On the contrary, some manufacturers, especially those in labor-

intensive industries, think that they have to sacrifice production effi-

ciency if they attempt to guarantee the product quality. Such a trade-

off phenomenon plagues many industries, in particular, the garment

industry as it is an experience-rich industry with relative low techno-

logical capabilities. Most decisions involved in the garment industry
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re determined based on human experience, without a clear-cut the-

ry to determine what production parameters should be used to op-

imize both efficiency and product quality. Without any knowledge

upport tools, there are no standardized approaches for monitoring

he production processes while having product quality taken into

onsideration. This has attracted many researchers to apply the use of

ata mining and artificial intelligence techniques in order to discover

nowledge to support decision making in garment production. Previ-

us research has described the use of fuzzy association rule mining

FARM) for determining appropriate process parameters for quality

ssurance (Lee, Ho, Choy, & Pang, 2014). The knowledge discovered

as, however, mainly based on the occurrence of frequent patterns.

s a consequence, parameters having rare associations are usually not

onsidered, nor included, in the rules.

In addition, genetic algorithms (GAs) have been applied to hy-

ridize FARM for optimization. In traditional GAs, the length of the

hromosomes is fixed, depending on the parameters appearing in

he set of rules. The rules obtained in FARM usually serve as the ini-

ial population. Considering that parameters having rare associations

re not considered during optimization, the diversity in the popula-

ion and the knowledge discovered is inherently limited. This paper
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akes an attempt to use a novel GA mechanism, namely the slippery

enetic algorithm (sGA), to overcome this limitation. The proposed

lippery genetic algorithm-based process mining system (sGAPMS)

llows changes to the chromosome length by insertion and deletion.

onsequently, different combinations of parameters can be consid-

red in a fuzzy rule, increasing the diversity of solutions. The knowl-

dge discovered in the rules in this paper is used to support quality

ssurance in the garment industry.

Previous research work has shown that the use of Boolean associ-

tion rule mining is promising for the formulation of effective Qual-

ty Improvement (QI) strategies in the garment industry (Lee et al.,

013). With the use of Boolean association rule mining, product de-

ects appearing in the rules showed no relationships with the param-

ters settings used in the production. This could be a drawback as

ne of the critical aspects of QI planning is to discover relationships

etween the process parameters and the product quality (Lau, Ho,

hu, Ho, & Lee, 2009). On the other hand, considering that decision

aking in production always requires consideration of various un-

ertainties (Azadeganm, Porobic, Ghazinoory, Samouei, & Kheirkhah,

011; Petrovic & Duenas, 2006), it is more convenient for operators

o describe the process parameters by using natural language such as

low” and “high”, instead of using quantitative values of the param-

ters. Since there are always no clear-out theories to judge whether

particular process parameter is “very low”, “low”, “high” or “very

igh”, it is important to take the fuzziness of data into consideration

hen discovering the relationships between the process parameters

nd the product quality. In this paper, attempts are made to hybridize

uzzy set concepts with association rule mining to diagnose the qual-

ty problems at the parameter level. The fuzzy association rules ob-

ained represent knowledge in fuzzy linguistic terms which are easily

nderstandable by human beings and can provide direct knowledge

upport for quality assurance.

This study is a continuing work, based on our recent research,

hich applied FARM for quality assurance in the garment industry

see Lee et al., 2014). The proposed sGAPMS in this paper acts as an

nhancement of the Radio Frequency Identification-based Recursive

rocess Mining System (RFID-RPMS) described in Lee et al. (2014) by

ptimizing the rules. This paper is a pioneer work in imitating and

ranscribing the biological slippage into GAs. The aim is to propose a

ew scheme of variable-length GAs to overcome limitations caused

y fixed-length GAs with an objective of enhancing garment qual-

ty. The contributions of this paper include a novel GA framework

ith slippage concepts, an integration of GA and FARM specifically in

he garment industry, and a more comprehensive quality assurance

cheme supported by the hybridization of artificial intelligence (AI)

echniques. A dataset collected in a garment manufacturing company

as been used to test the proposed system and compare the results

ith that of using a rule mining system without the sGA. By so do-

ng, the advantages brought by the sGA in achieving better garment

uality are confirmed.

. Literature review

In today’s customer-oriented market, QI of products has become

critical task in the manufacturing industry. Since QI requires anal-

sis of data (Köksal, Batmaz, & Testik, 2011), many researchers have

pplied data mining and artificial intelligence (AI) techniques to per-

orm QI activities. Association is a popular data mining technique to

dentify groups of items that occur together from datasets, and the

nowledge discovered is in the form of IF-THEN rules. The Boolean

ssociation rule mining problem over basket data was firstly intro-

uced in Agrawal and Srikant (1994). Two stages are involved in the

lgorithm (i) to find the frequent itemsets, and (ii) to use the frequent

temsets to generate association rules (Alatas, Akin, & Karci, 2008).

owever, in real-world applications, the data concerned are usually

ot Boolean, but numeric (Chen, Hong, & Tseng, 2009). Furthermore,
n the manufacturing industry, it is common that numeric data con-

ain uncertainties or vagueness which could arise from market de-

and, capacity availability, process times, and costs (Aliev, Fazlollahi,

uirimov, & Aliev, 2007; Martín, Rosete, & Fdez, 2014; Mula, Poler,

Garcia-Sabater, 2007). In this sense, fuzzy association rule mining

FARM) is more meaningful than Boolean association rule mining es-

ecially for application in the manufacturing industry.

Compared with other manufacturing industries, the garment in-

ustry is more complicated in nature as it consists of various ma-

hines, workers and thousands of bundles of cutting pieces producing

ifferent styles simultaneously (Gunesoglu & Meric, 2007). In addi-

ion, quality inspection of garments is performed manually (Wong,

uen, Fan, Chan, & Fung, 2009; Yuen, Wong, Qian, Chan, & Fung,

009). Without any mechanisms for analyzing the hidden correla-

ions between quality problems, defect prediction and defect diag-

osis cannot be carried out effectively, causing failure in achieving QI

Lee et al., 2013). Therefore, an attempt should be made to investi-

ate the capability of FARM in providing the garment industry with

nowledge support for achieving better garment quality.

Previous research has been done to apply FARM to help garment

anufacturers understand the relationship between parameter set-

ings and finished quality (Lee et al., 2014). The results showed that

ARM is capable of capturing process parameters and quality features

f products to support knowledge discovery for quality assurance. In

he abovementioned work, the data considered were expressed in

inguistic terms, such as “medium” and “high”, in the rules. These

ules are useful in the development of a fuzzy rule base for the appli-

ation of fuzzy logic. If they are of good quality, the results of the fuzzy

ogic can be greatly enhanced (Tahera, Ibrahim, & Lochert, 2008). In

iew of this, integrating fuzzy set concepts with genetic algorithms

GAs) has become an active research area to generate an optimal set

f fuzzy rules and membership functions (Ho et al., 2008; Lau, Tang,

o, & Chan, 2009; Wang, Hong, & Tseng, 2000). However, recent re-

earches show that the applications of GAs in the manufacturing sec-

or mainly focus on scheduling of production orders (Ishikawa, Kub-

ta, & Horio, 2015; Jun & Park, 2015; Rahman, Sarker, & Essam, 2015;

hang, Ong, & Nee, 2015), and logistics operations during or after pro-

uction (Joo & Kim, 2014; Mohtashami, 2015; Pramanik, Jana, Mon-

al, & Maiti, 2015). GA applications focusing on QI of products have

een scarce. In view of this, one of the highlighted contributions of

his paper is that GA is applied to refine the rules for improving the

roduct quality in the garment industry.

GA operates based on the principles of genetics and natural se-

ection in which crossover and mutation are the two basic opera-

ors. A possible solution for a given problem in GA is called an in-

ividual or a chromosome. The crossover operator generates two

ffspring (new candidate solutions) by recombining the informa-

ion from two parents, followed by the mutation operator in order

o perform a random alteration of some values in a chromosome

Juang, 2004). Wang et al. (2000) applied GA to the integration of

ultiple fuzzy rules sets. If some features were not used in indi-

idual rules, dummies would be inserted into the rules to ensure

hat all chromosomes were of the same length. In addition, Lau, Tang

t al. (2009) used GA to generate an optimal or nearly optimal fuzzy

et and membership functions for the process parameters. After the

omain knowledge was represented with a fuzzy rule set, the ob-

ained fuzzy rules and the associated memberships were encoded

nto chromosomes. Each chromosome represented one fuzzy rule

nd the related problem. Through the crossover and mutation op-

rations, an optimal or nearly optimal fuzzy set and membership

unctions for the process parameters were discovered. Furthermore,

hen et al. (2009) integrated GA and the fuzzy concepts to dis-

over suitable minimum supports, membership functions and use-

ul fuzzy association rules from historical transactions. Each chromo-

ome in the population represented a possible minimum support and

embership functions for an item. The chromosomes in the same
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Table 1

Comparison between the sGA and existing variable-length GAs.

sGA Messy GA, Goldberg et al. (1989) ALChyper-GA, Han et al. (2002)

Biologically inspired Yes, inspired by the slippage phenomenon in

DNA replication

No No

Crossover Uniform crossover No Best-best crossover

New mutation operators Slipped insertion, slipped deletion Cut, splice Removing-worst mutation,

inserting-good mutation

Application area Industrial process parameter optimization Elimination of bit positional

dependencies in a standard GA

Personnel scheduling

m

a

A

c

v

n

o

m

n

D

m

b

G

i

2

o

i

s

t

s

f

t

w

A

i

3

(

D

f

T

3

h

e

d

p

a

l

q

t

q

c

n

f

d

v

t

population were of the same length. In a similar vein, Yan,

Zhang, and Zhang (2009) designed a GA-based strategy for iden-

tifying association rules without specifying actual minimum sup-

port. However, in their design, only Boolean association rules

were considered. In the above mentioned work, only classical

GAs with fixed length chromosomes were used. As a result, pre-

vious knowledge is required to define constraints, for instance

the number of rules in the rule base (Rajesh & Kaimal, 2008).

Furthermore, the best achievable fitness is inherently limited by

the chromosome length and it is difficult to define an optimal

chromosome length, especially for design optimization problems

(Kim & De Weck, 2005).

To overcome this limitation, different variable-length GAs have

been proposed to increase the diversity of the chromosome lengths.

This can be done by introducing additional mutation operators to

vary the length of the chromosomes and to perform crossover on

chromosomes of differing lengths (Hutt & Warwick, 2007). The earli-

est example of a GA with variable length was the messy GA proposed

by Goldberg, Korb, and Deb (1989). It replaced crossover with cut and

splice operators to produce variable-length chromosomes. Further-

more, Han, Kendall, and Cowling (2002) designed an adaptive length

chromosome hyper-GA (ALChyper-GA) with two new mutation op-

erators, namely removing-worst mutation and inserting-good muta-

tion. The comparison between the sGA and the abovementioned GA

is shown in Table 1. Among these variable-length GAs, only sGA is bi-

ologically inspired, in particular, by the slippage phenomenon in DNA

replication. Therefore, it is more appropriately matching the biologi-

cal genetic representation. In addition, the messy GA was developed

to eliminate the bit positional dependencies in a standard GA. Bit val-

ues in a messy GA chromosome, each of which is tagged with a name

indicating its position, are extracted from the chromosome and re-

ordered, based on their names. As a result, bits are no longer in fixed

positions and can move around on a chromosome. However, one of

the limitations of the messy GA is that it focuses on bits. If there are

n variables, each of which need k bits, there will be n2nk additional

bits in the messy GA. In this sense, the messy GA may not be a fea-

sible solution if the problems to be solved are complicated, involving

a large set of variables. On the other hand, the ALChyper-GA has a

new crossover method, best-best crossover. The best group of genes

in the chromosomes are selected and exchanged during crossover.

This was followed the removing-worst mutation and inserting-good

mutation. The former one removes the worst group of genes in the

selected chromosome while the latter one inserts the best group of

genes from a randomly selected chromosome to a random point of

the desire chromosome. As genes are removed or inserted, the length

of the chromosomes in each generation changes. The ALChyper-GA

was applied to solve the personnel scheduling problem, and prob-

lems such as allocation of staff to timeslots and possibly locations can

be solved by the ALChyper-GA. Only quantitative values were con-

sidered in the chromosomes. Nevertheless, the sGA proposed in this

paper integrated fuzzy set concepts into the GA and solved optimiza-

tion problems while taking the fuzziness of data into consideration.

Though the use of sGA in the paper is illustrated to the case of the

garment industry, it can be applied in other manufacturing indus-

tries for industrial process parameter optimization. Considering that
any real data possess many forms of uncertainties, the application

reas of the sGA are more diverse than those of the messy GA and

LChyper-GA, as the fuzziness of data can be embedded into the sGA

hromosomes.

In this paper, the sGA, which is a novel variable-length GA, is de-

eloped. It is introduced to imitate and transcribe a biological phe-

omenon, namely biological slippage, in a way that chromosomes are

f variable lengths. In a DNA molecule, there are two strands comple-

entary to each other: (i) the new strand, and (ii) the old strand. The

ew strand is synthesized using the old strand as a template during

NA replication. Scientists have observed that a strand often slips and

isaligns with the other strand when there are repeating patterns of

ases in the DNA (Huntley & Golding, 2006; Petruska, Hartenstine, &

oodman, 1998). This phenomenon is called slippage and will result

n two types of mutation: (i) insertion, and (ii) deletion (Caporale,

003a). If the slipped part is on the new strand, insertion mutation

ccurs and the length of strands is increased. On the other hand, if

t is on the old strand, deletion mutation occurs and the length of

trands is shortened.

Biological slippage is able to provide new and advantageous solu-

ions to allow organisms to adapt to changing environments. In the

ame analogy, a computational slippage operation can be designed

or a GA to enhance the search for novel, as well as superior, solu-

ions. In this paper, the sGA is proposed for integrating with FARM

ith the aim of supporting quality assurance in the garment industry.

slippery genetic algorithm-based process mining system (sGAPMS)

s developed and the details are presented in Section 3.

. A slippery genetic algorithm-based process mining system

The sGAPMS, as shown in Fig. 1, consists of three modules, namely

i) Rule Generation Module, (ii) Rule Optimization Module, and (iii)

ecision Making Module. Details of each module are discussed in the

ollowing sections and the notations used in the sGAPMS are listed in

able 2.

.1. Rule Generation Module

The core function of the Rule Generation Module is to discover

idden relationships among parameters by FARM. The parameters are

xtracted from the historical production data stored in a centralized

atabase. In general, they can be classified into two types: (i) process

arameters, and (ii) quality features. The process parameters, such

s the speed of sewing machines and the water temperature during

aundering, refer to those parameters which are adjustable, while the

uality features, such as the number of broken stitches and areas of

hread discoloration, are the parameters used to measure the overall

uality of the products. Hereafter, these two types of parameters are

ollectively referred to as the parameters.

Since FARM integrates fuzzy set concepts and data mining tech-

iques to generate rules, fuzzy linguistic terms and membership

unctions have to be firstly defined for each parameter. Based on the

efinitions, the quantitative values of the parameters can be con-

erted into fuzzy sets through the fuzzification process. In addition,

he minimum support and confidence thresholds have to be defined
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Fig. 1. A slippery genetic algorithm-based mining system.
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n order to determine frequent itemsets among the parameters. Only

he rules satisfying the threshold values are regarded as useful fuzzy

ssociation rules and can be transferred to the Rule Optimization

odule. All the parameters are inputted into a series of computa-

ional procedures for FARM. Details of the mining algorithm are de-

cribed below. An example of the application of the algorithm is given

n Lee et al. (2014).

Step 1: For each production order Rθ , convert the quantitative

value τ ijt of the tth parameter of the jth process in the ith
production workstation into fuzzy set Fθ ijt based on the pre-

defined membership functions. Represent Fθ ijt as (Mθ ijt1 / fijt1

+ Mθ ijt2 / fijt2 +…+ Mθ ijta / fijta).

Step 2: Calculate the support count Countijtr of each fuzzy class fijtr

of parameter Pijt as

Countijtr =
∑

∀θ∈N

Mθ ijtr
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Table 2

Notations used in the sGAPMS.

Symbol Description

N The number of historical order records

N={1,2,…,n} The set of indexes of historical order records

Rθ The θ th order record, ∀θ ∈ N

S The number of production workstations in an order record

S={1,2,…,s} The set of indexes of production workstations in an order record

Wi The ith production workstation, ∀i ∈ S

ei The number of processes in ith production workstation, ∀i ∈ S

Ei={1,2,…ei} The set of indexes of processes in ith production workstation

δij The jth process of ith production workstation, ∀i ∈ S, ∀j ∈ Ma

kij The number of process parameters in jth process of ith production workstation

Kij={1,2,…kij} The set of indexes of process parameters in jth process of ith production workstation

Pijt The tth process parameters of jth process of ith production workstation

τ ijt The quantitative value of tth process parameters of Pij of Wi , ∀t ∈ Kij

Fθ ijt The fuzzy set converted from τ ijt in Rθ

aijt The number of fuzzy classes of Pijt

Aijt={1,2,…,aijt} The set of indexes of fuzzy classes of Pijt

fijtr The rth fuzzy classes of Pijt , ∀r ∈ Aijt

Mθ ijtr The fuzzy membership values of Pijt in Rθ in fuzzy class fijtr

Countijtr The summation of Mθ ijtr , representing the support count of fijtr

MAX-Countijt The maximum value among Countijtr of Pijt

MAX-Fijt The fuzzy classes of Pijt with MAX-Countijt

Ix The set of itemsets with x items

dijt The predefined minimum support threshold of Pijt

Ω The predefined minimum confidence threshold of rules

C The number of chromosomes in the population

C={1,2,…,c} The set of indexes of chromosomes in the population

Hσ The σ th chromosome, ∀σ ∈ C

Z The number of slippage operation

Z={1,2,…,z} The set of indexes of slippage operation

L The lth slippage operation, ∀l ∈ Z

A The slippage rate

B The crossover rate

� The mutation rate
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Step 3: Select the maximum values of the support count MAX-

Countijt among the fuzzy classes of each parameter and identify

the corresponding fuzzy class MAX-Fijt to represent the fuzzy

characteristic of Pijt in the later mining process.

Step 4: Set x=1, and temporarily put the parameters into Ix as

items. If MAX-Countijt is larger than or equal to its predefined

minimum support threshold dijt, keep it in Ix. Otherwise, re-

move it from Ix.

Step 5: Generate every combination of items in Ix to form (x+1)-

itemsets. For each itemset v with items (v1,v2,…,vx+1), identify

the maximum value of the threshold support counts among

items as pv. If the minimum value of the support counts among

items is equal to or larger than dv, temporarily put v in Ix+1.

Step 6: If Ix+1 �= null, go to the next step.

If Ix+1 = null and x=1, exit the algorithm. If Ix+1 = null and x>1, go

to Step 11.

Step 7: Calculate the fuzzy membership value Mθ v of v in Rθ as

Mθv = min( fθv1
, fθv2

· · · , fθvx+1
).

Step 8: Calculate the support count of v as

Countv =
∑

∀θ∈N

Mθv

Step 9: If Countv is larger than or equal to dv, keep v in Ix+1. Other-

wise, remove it from Ix+1.

Step 10: If Ix+1 �= null, set x= x+1 and repeat Steps 5–10.

If Ix+1 = null and x=1, exit the algorithm. If Ix+1 = null and x>1, go

to Step 11.

Step 11: Extract items from Ix for x ≥ 2 to construct possible rules.

Calculate the confidence value of each rule.

Step 12: If the confidence value of a rule is larger than or equal to

the predefined minimum confidence threshold Ω, the rule is

regarded as a useful fuzzy association rule.
After a set of fuzzy association rules is obtained, they are trans-

erred to the next module where GA is applied for optimization.

.2. Rule Optimization Module

In the Rule Optimization Module, slippage concepts are adopted

s an enhancement to a conventional GA framework. The proposed

GA is an algorithm in which slippage takes place to increase diversity

n the population by varying the chromosome length. This module

tarts with a set of fuzzy rules obtained in the Rule Generation Mod-

le being encoded into chromosomes. Since only parameters which

ppear in the fuzzy rules are included in the initial population, slip-

age takes place to let different parameters have a chance to be in-

erted into or removed from the chromosomes. Because of the ran-

omness, constraints could be violated and chromosome repairing is

hus required. The fitness of each chromosome is then evaluated be-

ore selecting chromosomes for crossover and mutation. Before the

ermination criteria are reached, crossover and mutation repeatedly

ccur to generate different solutions. When the termination criteria

re fulfilled, the chromosomes are decoded into new fuzzy associa-

ion rules and stored in the knowledge repository for future decision

aking.

.2.1. Chromosome encoding

In the sGAPMS, each chromosome is a solution for discovering the

early optimal fuzzy rules for enhancing the finished quality of the

roducts. The basic idea of the chromosome encoding scheme comes

rom Ho et al. (2008). There are two regions in each chromosome: (i)

he production workstation and process correlation region, and (ii)

he parameter region.

(i) Production workstation and process correlation region
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Fig. 2. Chromosome encoding a fuzzy association rule.

Fig. 3. Example of insertion.
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In the production workstation and process correlation region, the

alue of each gene is either 0 or 1. A gene containing a value of 1 im-

lies that the corresponding production workstation, process or pa-

ameter appears in the fuzzy rule. For example, if process parameter 1

n process 1 in production workstation 1 appears in the rule, then the

alues of the three corresponding genes, W1, δ11 and P111 , will be 1.

n the other hand, if production workstation 2 does not appear in the

ule, the value of gene W2 will be 0 and that of other genes correlated

ith production workstation 2, such as δ2j and P2jt (for j=1,2,…., e2

nd t=1,2,…,k2j), will also be 0.

(ii) Parameter region

In the parameter region, the values of the genes reflect the associ-

ted fuzzy classes of the corresponding parameters that appear in the

ule. For ease of clarification, hereafter, the symbol Q is used to distin-

uish the quantitative value of a quality feature from that of process

arameter τ ijt. The values of genes in the parameter region represent

he belonging fuzzy classes after the quantitative values of process

arameters or quality features are converted into fuzzy classes. As-

uming that there are r fuzzy classes of parameter τ 111, the value of

ene τ 111 will range between 0 and r. If τ 111 is associated with the

th fuzzy class, the gene will contain r. Similarly, if Q1 is associated

ith the gth fuzzy classes, the gene will contain g. For parameters

hat are absent in the rules, the values of the corresponding genes

re encoded as 0. An example of a chromosome encoding a fuzzy rule

s shown in Fig. 2. The condition part of a fuzzy rule considers the

rocess parameters while the consequent part considers the quality

eatures.

.2.2. Population initialization

The rules obtained from the Rule Generation Module are used

o form the initial population of the sGA. However, only those pa-

ameters with frequent associations can be mined and appear in the

ules. As a result, parameters which rarely appear but are significant

o the overall production will be neglected. In this sense, the knowl-

dge obtained solely by FARM is not sufficiently sophisticated to solve

roblems in actual production environments. In view of this, slippage

peration is introduced so that those initially neglected parameters

ave a chance to be inserted into the chromosomes, whilst some pa-

ameters existing in the initial rules can also have a chance to be re-

oved from the chromosomes.
.2.3. Slippage operation

By imitating the biological slippage behavior, the slippage opera-

ion allows insertion and deletion so as to vary the number of genes

n a chromosome. Each chromosome undergoes a slippage operation

f the random number being generated is smaller than or equal to the

redefined slippage rate. When slippage occurs, a position for slip-

age is selected randomly. For instance, if the slippage position being

enerated is r, then slippage will take place at the rth gene. In ad-

ition, the length of the slipped part is generated randomly and it

epresents the number of genes to be inserted into or removed from

he original chromosome, starting from the selected position. During

lippage, whether insertion or deletion should be performed in the

hromosome, is chosen randomly.

(i) Insertion

When insertion is chosen, the parameters for insertions are ran-

omly selected and the number of parameters for insertion is depen-

ent on the length of the slipped part generated. The values of the

nserted genes are identical to that of the gene at the slippage posi-

ion. For example, if the length of the slipped part is n and the value

f the gene at the slippage position is 1, the length of the chromo-

ome will be increased by n units of genes and the extra genes will all

arry the value of 1. An example of the insertion operation is shown in

ig. 3. The slippage position is 6 and the 6th gene contains the value

f 1. If the length of slipped part is 3, the length of the chromosome

ill then be increased by 3 units of genes and the extra genes will all

arry the value of 1.

(ii) Deletion

Deletion leads to a decrease in the length of the chromosomes. Ac-

ording to the length of the slipped part generated, a certain number

f consecutive genes will be removed from the chromosomes. If the

ength of the slipped part λ is generated, λ genes will be removed,

tarting from the slippage position. An example is shown in Fig. 4

ith λ = 4. Four consecutive genes are removed from the chromo-

ome and the sequence of the remaining genes is unchanged.

(iii) If the predefined number of the slippage is larger than 1, a

chromosome can experience slippage more than once. Since

there is no restriction to the choice of insertion and deletion,

it is possible that each chromosome undergoes both insertion



242 C.K.H. Lee et al. / Expert Systems With Applications 46 (2016) 236–248

Fig. 4. Example of deletion.
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and deletion, generating a completely different set of fuzzy

rules.

3.2.4. Chromosome repairing

After slippage, crossover and mutation, chromosome repairing is

performed to ensure that every chromosome obeys the encoding

scheme. The aim of chromosome repairing is to fix any chromosomes

which have any of the above violations. There are four possible types

of violations of the chromosome encoding scheme after slippage oc-

curs. The first type of violation refers to when there are inconsis-

tencies between the two regions of a chromosome. If the genes in

the production workstation and process correlation region contain

1, the related genes in the parameter region should contain a non-

zero number to maintain consistency. Otherwise, forward repairing

is performed by randomly assigning the related genes in the param-

eter region to a non-zero number. On the other hand, if the genes in

the parameter region contain values larger than 1, the related genes

in the production workstation and process correlation region should

contain 1. Otherwise, backward repairing is carried out by changing

the values of the corresponding genes in the production workstation

and process correlation region into 1, to maintain consistency.

The second type of violation occurs when some expected genes

are missing in the chromosomes. For example, it is expected that τ 111

exists in the chromosomes when W1, δ11 and P111 exist. Otherwise,

there are no fuzzy classes representing P111, violating the structure

of a fuzzy rule. To deal with this type of violation, the values of the

genes which are correlated with the missing genes will be changed to

0. With reference to the aforementioned example, genes W1, δ11 and

P111 have to carry a value of 0 when τ 111 is absent in the chromosome.

The third type of violation occurs when the values of the genes

in the production workstation and process correlation region are nei-

ther 0 nor 1. In such a case, a binary number is randomly assigned to

the genes concerned during chromosome repairing.

The fourth type of violation exists when the values of the genes in

the parameter region of a chromosome exceed the number of fuzzy

classes of the corresponding parameters. To repair the chromosome,

the values of the genes concerned are changed to random values.

Though there are other researchers fixing such a violation by adjust-

ing the values to maximum allowable values (Ho et al., 2008), random

values are more preferable in the sGAPMS for minimizing unneces-

sary upward bias.

3.2.5. Fitness function evaluation

In the sGAPMS, a fit chromosome should be able to predict the

finished quality with high accuracy. Therefore, the fitness function

is used to minimize the differences between the predicted quality

features and the actual quality features. The predicted quality fea-

tures can be obtained by using fuzzy logic in which defuzzification

is carried out to convert them into quantitative values based on the

obtained rules. Consequently, the proposed fitness function is repre-

sented as:

Minimize fitness = 1

n

∑

iN

∑

jY

wj(qi j − q′
i j)

2

here n is the number of testing samples, N is the set of index of test-

ng samples, Y is the set of index of finished quality features, qij is the

redicted quality features achieved by defuzzification, q′
ijis the ac-

ual quality features, and wj is the weighting assigned to each quality

eature.

Finally, chromosome decoding is carried out to convert the chro-

osomes into fuzzy association rules when the termination criteria

f the sGAPMS are satisfied.

.3. Decision Support Module

The Decision Support Module is used to estimate the resultant

roduct features when a set of parameters are given. When the pa-

ameters used in the production order in hand are inputted into the

odule, relevant decision rules are triggered. Based on the knowl-

dge stated in the rules, the quality features are predicted. The de-

uzzification process is used to convert the fuzzy terms of the quality

eatures into quantitative values. With the knowledge supported by

he system, manufacturers are provided with feedback on their pa-

ameter settings. The knowledge is useful for the adjustment of ap-

ropriate parameter settings and the formulation of an effective qual-

ty assurance scheme.

. Implementation of the sGAPMS in a case company

In order to analyze the performance of the sGAPMS, the sGAPMS is

mplemented in a case company. The case company is a Hong Kong-

ased garment manufacturing company founded in 1977 and is one

f the largest manufacturers in the Hong Kong garment industry. Its

anufacturing capacities include production facilities in Hong Kong,

hina, Malaysia, Thailand and Vietnam. It produces more than 15 mil-

ion pieces of garments annually for exporting to European markets.

n current practice, the garment quality is determined by human in-

pection. Defective garments will be sent to relevant operations for

eworking or discarding. Inspectors do not have any information for

ausal analysis and thus operators receive no feedback on their choice

f production parameters. As a result, FARM is a useful tool to provide

hem with knowledge support to determine appropriate process pa-

ameters which can have positive impacts on the resultant product

uality. sGA is used to optimize the fuzzy rules obtained in FARM.

he implementation of the sGAPMS is undertaken in one of its facto-

ies located in Shenzhen, China. The procedures involve four phases,

hich are (i) Data collection for FARM, (ii) Definition of parameter

etting in the sGA, (iii) Application of fuzzy logic for defuzzification,

nd (iv) Regular rule evaluation.

.1. Data collection for FARM

The FARM algorithm is performed with the dataset provided by

he case company. It starts with the FARM to generate a set of rules

s the initial population. Thus, data essential for the FARM have to

e collected. They include the process parameters involved in each

roduction workstation and the quality features of the garments,

ll of which can be collected from existing production orders and
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Fig. 5. Examples of membership functions of parameters.
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Table 3

Examples of minimum support count parameter thresholds.

Parameter Minimum support

count threshold

Ply height of the fabric 20.2

Speed of the sewing machines 15.9

Washing time 21.6

Average number of critical defects per garment 10.5

Table 4

Examples of fuzzy association rules obtained after the use of FARM.

Rule 1

IF The sewing distance is long AND

The number of trims for attachment per garment is large AND

The speed of the sewing machines is high AND

The speed of the finishing machines is high

THEN

The average number of minor defects per garment is small.

Rule 2

IF The ply height of the fabrics is low AND

The number of cutting pieces per garment is small AND

The length of the marker is long AND

The speed of the cutting machines is normal

THEN

The average number of major defects per garment is normal.
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uality reports. There are four production workstations considered

n this case study, which are (i) spreading and cutting workstation,

ii) sewing workstation, (iii) finishing workstation, and (iv) quality

nspection. Examples of the process parameters identified for data

ollection include the ply height of the fabric, cutting speed, sewing

peed and washing temperature. Their settings will have a direct im-

act on the resulting product quality. On the other hand, the quality

eatures, representing the overall quality of the garments, include the

verage numbers of critical defects, major defects and minor defects

er garment in each production order.

In order to determine the fuzzy sets and the membership func-

ions, interviews are conducted so as to have the domain experts

efining linguistic terms and the universe of discourse of each pa-

ameter. Compared to other methods, fuzzy inference uses qualita-

ive descriptions to provide quantitative values. Therefore, it is essen-

ial to determine some conventional linguistic terms for describing

he parameters. There is no restriction on the number of linguistic

erms for each parameter, however, the linguistic terms determined

ave to be easily interpreted by the domain experts, otherwise, there

ill be difficulties when constructing a set of fuzzy rules. In addi-

ion, domain experts have to define a range of the values in which

here are no clear-cut boundaries in order to associate most values

o a single linguistic term. Within this range, membership functions

re positioned in such a way that the input values can be associated

ith more than one complementary membership function. Some ex-

mples of the membership functions of the parameters are shown

n Fig. 5. The choice of membership functions is based on subjective

udgment, and the initial values rely heavily on trial and error ap-

roaches. Considering that most domain experts have limited tech-

ical knowledge, only triangular and trapezoidal membership func-

ions are provided for their selection. It is believed that users who lack

I knowledge will find it easier to understand triangular and trape-

oidal membership functions, compared to other smooth functions

uch as Gaussian functions.

In addition, the minimum support threshold values of the param-

ters and the minimum confidence threshold values of the rules have

o be determined before useful association rules can be mined. This

equires a trial-and-error approach to determine suitable threshold

alues. If the threshold values are set too high, it could be difficult to

ine any rules. On the contrary, if the threshold values are set too

ow, a lot of rules, including trivial and inexplicable ones, could be

enerated. The minimum support thresholds of some of the param-

ters are shown in Table 3. After executing the 12 steps in the FARM

pproach, a set of fuzzy association rules is obtained. Only particular

ules, with the condition part consisting of the process parameters

nd the consequent part consisting of the quality features of products,
 n
re considered. Table 4 lists some examples of the rules obtained for

confidence threshold value of 0.75.

.2. Definition of parameter settings in the sGA

Like the traditional GA approach, the sGA involves parameters

hich have to be defined before the execution of the algorithm.

irstly, a crossover rate β , ranging between 0 and 1, is defined by

sers. To decide which pair(s) of chromosomes should be chosen for

erforming crossover, there are c random numbers ranging between

and 1 generated, each of which represents the crossover probability

ndex of a chromosome. If the crossover probability index of a chro-

osome is smaller than β , crossover occurs in the chromosome. In

he sGAPMS, the uniform crossover method is adopted. A mask con-

aining μ random binary numbers is generated where μ is the num-

er of genes in the shortest chromosomes in the parent pool. Each

inary number in the mask corresponds to one gene of the chromo-

omes, parent A and parent B. If the binary number corresponding to

gene is 1, the particular genes of parents A and B are exchanged. If

ot, the genes remain unchanged.
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Table 5

Examples of fuzzy association rules obtained after the use of sGA.

Rule Confidence

Rule 1

IF The speed of the sewing machines is high AND

The thread tension is high 0.91

THEN The number of broken stitches is high.

Rule 2

IF The ply height of fabric is low AND

The speed of the cutting machines is low AND 0.87

The length of the marker is short

THEN THEN the number of major defects is low
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Similar to the crossover rate, a mutation rate γ , ranging between

0 and 1, is defined by users, and a random number within 0 and 1

is then generated for each gene. If the random number is smaller

than γ , mutation occurs at the corresponding gene. In the produc-

tion workstation and process correlation region, bit-flip mutation is

used to convert the value of the gene from 0 to 1, or vice versa. On

the other hand, in the mutation in the parameter region, a fixed value

amount is added to or subtracted from the selected gene. The fixed

value amount is generated randomly in each iteration of the sGAPMS.

Apart from the crossover and mutation rates, the slippage rate has

to be defined in the sGA. The definition of parameter settings in the

sGA is case sensitive and it is thus unwise to adopt the values directly

from other related work. To ensure their suitability, a trial-and-error

approach is used to determine the appropriate crossover, mutation

and slippage rates. In this case study, the uniform crossover method

with two different crossover rates: 0.7 and 0.9 is selected. In addi-

tion, three slippage rates: 0.01, 0.02 and 0.05, and two mutation rates:

0.01 and 0.02 are used to control the rate of diversification. Different

combinations of the settings are used to compare their effects on the

generated solutions. The parameters, which can generate solutions,

are averaged from 50 independent runs, with the best fitness values

up to 4000 iterations selected for implementation. In this case study,

the suggested crossover, mutation and slippage rates are 0.7, 0.02 and

0.05, respectively.

4.3. Fitness function evaluation

The evaluation of the fitness of the chromosomes requires the de-

fuzzification process. The center of gravity is used as the defuzzifi-

cation method. In addition, a weighting factor is assigned to each

quality feature in the fitness function. More serious quality problems

are assigned with larger weights. According to the domain experts,

weights assigned to the numbers of critical defects, major defects and

minor defects are 0.5, 0.3 and 0.2, respectively.

Suppose there is a chromosome stating that “IF the ply height of

fabrics is large and the cutting speed is high, THEN the average num-

ber of critical defects per garment is high, the average number of ma-

jor defects per garment is normal, and the average number of mi-

nor defects per garment is small”. A searching process is then started

to look for any historical orders in the database fulfilling the condi-

tion part of the chromosome, i.e. having quantitative values of the

ply height of the fabrics and cutting speed belong to fuzzy classes

of “large” and “high” respectively. For instance, according to one his-

torical production order in which the condition part of the chromo-

some is fulfilled, the actual average numbers of critical defects, ma-

jor defects and minor defects were 0.72,1.01 and 1.25 per garment,

respectively. The quantitative values of the ply height of the fabrics

and the cutting speed that appeared in the order are then extracted

and inputted for defuzzification. Based on the given chromosome, the

predicted average numbers of critical defects, major defects and mi-

nor defects are 0.51, 0.89 and 1.43 per garment respectively. In this

case, the fitness value of the chromosome = 0.5×(0.51−0.72)2 + 0.3×
(0.89–1.01)2 + 0.2× (1.43−1.25)2 = 0.03285. Chromosomes with min-

imum fitness values are regarded as better solutions, capable of pre-

dicting the product quality more accurately. Thus, more appropriate

parameter settings can be determined based on these solutions.

4.4. Regular rule evaluation

After the chromosomes are decoded, a set of fuzzy association

rules is obtained. These rules are expected to be of good quality and

can predict the quality features with little deviation. However, con-

sidering that the actual production environment is dynamic, regular

rule evaluation is required to ensure that the rules are reliable and re-

sponsive to the actual environment. Quality engineers are responsible

for checking whether the output of the sGAPMS predicts the resultant
roduct quality with high accuracy, with reference to the actual qual-

ty control reports. When necessary, domain experts are allowed to

djust the parameter settings involved in the sGAPMS. The objective

f their adjustment is to improve the mining process so as to gen-

rate rules with better quality. Based on the knowledge discovered

n the verified rules, operators are able to determine the process pa-

ameters to be used in garment production in order to achieve high

uality products.

In the case study, through the use of the sGA, different pa-

ameters can be inserted into or removed from the chromosomes.

able 5 lists the two fuzzy association rules with the greatest con-

dence values after the use of the sGA. It is expected that rules with

reater confidence values are more responsive to the actual produc-

ion environment. Thus, the knowledge discovered by these rules is

ore significant and can help the decision makers realize strong rela-

ionships between the process parameters and the product quality. In

ddition, some parameters, as shown in Table 5, such as thread ten-

ion, were initially ignored in FARM but are now re-considered during

ule optimization and appear in the rules. They are considered in the

hromosome because of the insertion operation, one of the slipped

utations in the sGA. On the other hand, there are also some param-

ters removed from the chromosomes because of the deletion opera-

ion. As a result, different combinations of parameters can be consid-

red in a rule, increasing the diversity of the solutions.

. Results and discussion

It is believed that the laws of nature provide a good source for the

nspiration of effective meta-heuristic algorithms for solving compli-

ated problems and developing intelligent systems. For instance, GAs

nd differential evolutionary algorithms are inspired by biological

volutionary processes; particle swarm optimization algorithms, ar-

ificial bee colony algorithms, and ant colony optimization algorithms

re inspired from animal behavior. These nature-inspired algorithms

ave been widely applied in various fields. Because of their proven

fficiency and merit in discovering novel and better solutions to hard

roblems, with nature-inspired algorithms attracted more and more

ttention from researchers and engineers in various fields of pro-

uction research. The sGA proposed in this paper was inspired by

he biological slippage phenomenon commonly found in DNA repli-

ation. In fact, slippage is one of the most widespread and power-

ul means of providing genetic variation for evolution (Kashi & King,

006). Due to biological slippage, organisms can keep generating di-

ersity, allowing them to find the right approach in order to adapt to

hanging environments (Kashi, King, & Soller, 1997; Moxon, Rainey,

owak, & Lenski, 1994; Trifonov, 1999; Verstrepen, Jansen, Lewitter,

Fink, 2005). For instance, fruit flies that cannot maintain their body

emperature, can still survive in extreme climates because fruit fly

ariants have different lengths of chromosomes for managing their

iological clock at different temperatures (Caporale, 2003a). Addi-

ionally, Haemophilus influenza, a bacterium surviving in the human

ose and throat, keeps changing its coat by slipping at locations with
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Table 6

Comparison between Kaisen and sGAPMS.

Kaisen sGAPMS

Approach Process-oriented Parameter-oriented

Suggestion for QI Generated from workers Generated based on historical data

Way of achieving ongoing improvement Elimination of waste, and standardization Adoption of learnt process parameters recursively

Cycle time Longer Shorter
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Table 7

Improvement achieved by the use of the sGAPMS and the RFID-RPMS.

With the use of the

sGAPMS (%)

With the use of the

RFID-RPMS, Lee et

al. (2014) (%)

Rework cost 34 30

Production efficiency 23 26

The number of critical defects 9 7

The number of major defects 22 20

The number of minor defects 27 24
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epetitive gene sequences so that it can find a coat which does not

rigger an immune response (Caporale, 2003b). Compared with other

xed-length GAs, the sGA is more appropriately matched to biologi-

al genetic representation as biological genomes have been proven to

ary in length during evolution (Burke, De Jong, Grefenstette, Ram-

ey, & Wu, 1998). When the chromosomes are used to encode fuzzy

ules, the sGA allows changes to the length of chromosomes and

hus different combinations of parameters can be considered in the

ules.

Traditional association rule mining without integrating fuzzy set

oncepts can only discover the relationship between the existence of

tems. For instance, Chougule, Rajpathak, and Bandyopadhyay (2011)

sed association rule mining to detect anomalies in the field that

auses customer dissatisfaction, and the knowledge discovered was

sed for root cause identification. In a similar vein, Lee et al. (2013)

pplied the same tool to detect the correlations among different gar-

ent defects, providing knowledge support for defect prediction.

owever, the knowledge discovered by traditional association rule

ining is at a Boolean level and is not sophisticated enough to pro-

ide decision support on quality management. Thus, it is a drawback

o use traditional association rule mining for solving quality prob-

ems because one of the critical aspects of planning for QI is to dis-

over the relationship between items at the parameter level (Lau, Ho

t al., 2009). On the contrary, FARM approaches are able to discover

nowledge at a parameter level by describing the quantitative values

f the parameters in fuzzy terms. Lee et al. (2014) applied FARM to

nvestigate the relationships between production parameters and the

esultant product quality. Their goal was to help operators to deter-

ine the appropriate process parameters for production. However, in

heir study, the decision rules obtained might not be optimal. On the

ther hand, Ho et al. (2008) used GA to optimize the fuzzy associa-

ion rules. The GA they applied was a classical GA with fixed chromo-

ome length. As a result, the best achievable chromosome fitness is

nherently limited by the fixed chromosome length. Comparing with

he above mentioned work, the sGAPMS integrates fuzzy set concepts

o traditional association rule mining, Its performance is better than

hat of tradition association rule mining approaches as it allows the

lanning for QI to be conducted at the parameter level. In addition, it

lso outperforms some existing FARM-based approaches as proposed

y Ho et al. (2008) and Lee et al. (2014)) because the fuzzy association

ules obtained in the sGAPMS are optimized by a variable-length GA.

imitations caused by the fix-length chromosome length can thus be

liminated.

Table 6 compares the sGAPMS with the Kaisen QI tool. In general,

aisen signifies small improvements made in the status quo as a re-

ult of ongoing efforts. It is a process-oriented approach to solve prob-

ems in a rational way. In usual practice, suggestions for improve-

ent are generated from workers and the suggestions are posted on

he wall of the workplace in order to encourage competition among

orkers. It is expected that each suggestion, once implemented, leads

o a revised quality standard. In Kaisen, when a quality problem oc-

urs, the organization will check on the resources such as machines,

ools and workers, and find out the root cause. Elimination of waste is

ncouraged so as to ensure that all existing activities can add value to

he organization. Standardization is also carried out for prevention of

ecurrence. It can be seen that the cycle time for conducting a Kaisen
roject is relatively long and is also dependent on the self-discipline

f the workers. On the other hand, the sGAPMS designed in this paper

s a parameter-oriented approach for managing the product quality.

uggestions for QI are generated through a series of mining proce-

ures based on the historical data. In particular, different combina-

ions of parameters can be considered because of the variable-length

GA scheme. Once the hidden relationships between the process pa-

ameters and the quality features are discovered, learnt process pa-

ameters are available for adoption in the actual production environ-

ent, achieving ongoing improvement. As the quality problems are

nalyzed quantitatively, together with the solutions determined by

he sGAPMS, time spent on identifying the root causes is eliminated.

s such, the time for QI with the use of the sGAPMS is shorter than

hat of Kaisen. In any time-sensitive industry, such as the garment

ndustry, the sGAPMS is a better choice for improving the product

uality.

In this paper, improvement achieved in the company by the use

f the sGAPMS is measured in terms of the rework cost, the produc-

ion efficiency, and the numbers of critical defects, major defects and

inor defects. The results are compared with those achieved by the

FID-RPMS in Lee et al. (2014) in which quality assurance was sup-

orted solely by FARM without the application of GA. Therefore, it is

elieved that the differences found in the comparison are mainly due

o the introduction of sGA in the system for optimization purposes.

able 7 compares the results obtained after a six-month pilot run of

he system, and the results are discussed in the following sections.

(i) Reduced rework cost

After a six-month pilot run of the system, the sGAPMS reduced

he rework cost by 34%, which is 4% higher than the RFID-RPMS. By

ooking at the mined relationship between process parameters and

uality features, quality engineers are able to conduct causal analysis

f the defect problems and provide feedback on the performance of

ifferent production workstations so as to avoid rework of garments.

he sGAPMS achieved better cost reduction than the RFID-RPMS be-

ause more parameters can be considered in the fuzzy association

ules in the sGAPMS. In the sGAPMS, parameters which are initially

gnored in the FARM can have a chance to be re-considered during

ule optimization. Because of the slippage concepts in the sGA, differ-

nt combinations of production process parameters can appear in the

ules by insertion and deletion, allowing knowledge to be discovered

or quality assurance in a more comprehensive way. On the contrary,

he RFID-RPMS only considers parameters based on their frequent as-

ociation. As a result, the knowledge mined by the RFID-RPMS is lim-

ted.
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Fig. 6. Comparison between sGA and the fuzzy version of ALChyper-GA with number

of iterations = 1000.
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(ii) Increased production efficiency

The production efficiency is improved by 23% after the use of the

sGAPMS. One of the reasons is that the time for rework of garments

is significantly reduced. As a consequence, the average production

lead time is shortened. However, such an improvement is 3% slightly

less than that achieved by the use of the RFID-RPMS. This could be

attributed to the absence of RFID technologies. In the RFID-RPMS,

RFID was employed for data collection, allowing the manufacturers

to identify any bottlenecks in production and take proactive mea-

sures to adjust process settings on a real-time basis. In this sense, the

RFID-RPMS is superior to the sGAPMS in terms of the improvement in

production efficiency. To further improve the benefits of the sGAPMS,

one can consider having the RFID included in the production lines for

data collection.

(iii) Improved quality features

The quality features are improved after the implementation of the

sGAPMS. In particular, the numbers of critical defects, major defects

and minor defects are reduced by 9%, 22% and 27%, respectively. This

reveals that the knowledge discovered by the sGAPMS is useful for

improving the resultant quality of the garments. As the condition part

of the fuzzy association rules concerns the production process pa-

rameter settings, the quality assurance is supported by the sGAPMS at

the parameter level. This allows garment manufacturers to adjust the
Fig. 7. Comparison between sGA and the fuzzy version o
rocess parameters directly in order to achieve the desired product

uality. Through the defuzzification process, the sGAPMS can predict

he resultant quality features based on adjustment of the parame-

ers. Compared with the RFID-RPMS, the sGAPMS improves the qual-

ty features to a larger extent. This is because the diversity of rules is

ncreased with the use of the sGA and the overall quality of the rules

an be improved eventually. These rules with better quality can pre-

ict the quality features with less deviation. As a result, more reliable

uality assurance activities can be carried out.

The sGA is compared with a fuzzy version of the ALChyper-GA

nd the results are shown in Figs. 6 and 7. A total of 50 rules are

sed to form the initial population and the fitness functions are com-

ared up to 1000 and 2000 iterations. It is found that the fitness

unction obtained by the fuzzy version of the ALChyper-GA is bet-

er than that obtained by the sGA when the number of iterations is

et to be 1000 as shown in Fig. 6. No convergence is observed in the

GA. However, when the number of iterations is increased to 2000,

onvergence is found in both algorithms and the fitness function ob-

ained by the sGA becomes slightly better than that obtained by the

uzzy version of the ALChyber-GA as shown in Fig. 7. In this sense,

hen a longer time is allowed for executing the algorithms, the sGA

s more preferred as the slippage operations increase the diversity

f solutions, compensating the limitations of FARM due to the sub-

ective choice of minimum support count threshold values. On the

ther hand, the fuzzy version of ALChyper-GA is more preferred when

nly a shorter time is allowed for execution. This can be contributed

y the inserting-good mutation and removing-worst mutation in the

LChyper-GA as they can rapidly improve the quality of rules. In the

LChyer-GA, genes which give the most improvement of the fitness

unction are regarded as best genes for insertion, while genes which

ive no improvement to the fitness function are regarded as worst

enes for removal. However, in the experiments in this paper, there

re no clear guidelines on the definition of best genes for insertion

r the definition of worst genes for removal. Impacts of a single gene

n the fitness function improvement are difficult to measure in this

ase problem, increasing the difficulties in choosing particular genes

or insertion and deletion. Subjective judgment is currently adopted

o pre-define which genes are to be inserted to or removed from

he chromosomes in the fuzzy version of the ALChyper-GA. As a re-

ult, the comparison results here are case-sensitive to some extent

nd more research efforts should thus be done on the determina-

ions of best genes and worst genes based on their impacts on fitness
f ALChyper-GA with number of iterations = 2000.
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unction before the execution of the fuzzy-ALChyper-GA for solving

he QI problems.

. Conclusions

In this study, a slippery genetic algorithm-based process mining

ystem is developed to support quality assurance in the garment in-

ustry. A novel variable-length GA framework, sGA, is introduced to

ptimize a set of fuzzy association rules. It imitates the biological slip-

age phenomenon during DNA replication to enhance the search for

uperior solutions. Compared with classical GAs, the sGA can increase

he diversity of solutions and discover knowledge more comprehen-

ively thereby achieving better product quality. The results reveal that

he sGAPMS can effectively help garment manufacturers guarantee

he quality of products with optimal process parameters.

According to the literature, traditional expert and intelligent sys-

ems for quality management have focused on the manufacturing

ector as a whole, without considering the specific needs of the gar-

ent industry. However, in practical situations, the quality man-

gement of the garment industry is more challenging than other

anufacturing industries because of the error-prone nature of the

rocesses involved in garment manufacturing. Therefore, instead of

eveloping a generic system architecture for the manufacturing sec-

or, this paper aims to develop an intelligent system that specifically

onsiders the needs of the garment industry in order to support QI

ctivities. Another significant aspect of the research includes the de-

ign and development of a novel nature-inspired algorithm, sGA. In

he past decades, more and more researchers have suggested that

he laws of nature are good sources for inspiration of effective meta-

euristic algorithms in expert and intelligent systems. This has stim-

lated many researchers to develop novel algorithms which are in-

pired by natural phenomenon. The sGA proposed in this paper is

nspired by the biological slippage phenomenon commonly found

n DNA replication. Unlike conventional fixed-length GAs, it allows

hanges to the length of each chromosome and thus different combi-

ations of parameters can be considered in a fuzzy rule. This is con-

idered as having remarkable significance in this paper since results

f previous related research applying GA in fuzzy rule optimization

ave been inherently limited by the chromosome length.

Despite the contributions made by this paper in both academia

nd the garment industry, there are some limitations in the sGAPMS,

ompared with other existing expert and intelligent systems. Firstly,

he relationships between the process parameters and the resultant

uality features are discovered in terms of fuzzy association rules.

hey serve as knowledge support for the garment industry to assure

etter product quality. However, the determination of the appropri-

te process parameters still relies on the system users to some extent

o analyze the rules mined, and to test and input different combina-

ions of process parameters into the system for estimating the qual-

ty features. Therefore, extra investigation may be required to assist

he users in their analysis. Secondly, the threshold values of the pa-

ameter support counts, the slippage rate, the crossover rate and the

utation rate are defined by trial-and-error approaches. To ensure

he suitability of their definition, it could be a time-consuming task

o have the system users determine the appropriate values of these

arameters before a set of useful fuzzy association rules can be gen-

rated. Hence, automatic methods for determining these values could

e considered in order to avoid the trial-and-error approaches.

Future research work in expert and intelligent systems could be

onducted in four directions: (1) in the sGAPMS, the choice of mem-

ership functions of the parameters is based on subjective decision

riteria and the initial values rely on trial and error approaches.

n addition, the membership functions are assumed to be static. In

iew of these, particular learning methods, such as Artificial Neu-

al Networks, could be incorporated in variable-length GA-based Ex-

ert and Intelligent Systems to dynamically determine the optimal
embership functions for the parameters so as to respond to the ac-

ual production environment; (2) future work could also focus on a

omparison of the sGA performance with different parameter set-

ings from a theoretical perspective. In particular, the parameters set-

ings used in the sGA, namely the population size, the number of iter-

tions, the slippage rate, the crossover rate and the mutation rate, are

ompared. It is expected that the sGA under different parameter set-

ings will perform differently in terms of the best fitness values and

he convergence. Based on the results, some decision criteria for se-

ecting appropriate parameter settings can be obtained; (3) more re-

earch efforts related to expert and intelligent systems could be paid

n optimizing the fuzzy rules by using other existing fixed-length GAs

nd comparing their results with that of the sGA. It is suggested that

heir performances could be compared under different population

izes and numbers of iterations. The results will be useful for iden-

ifying scenarios in which the sGA outperforms fixed-length GAs; (4)

n the sGA, each parameter has the same possibility of being inserted

nto or removed from the chromosomes. Considering that some pa-

ameters could have more significant impacts on the resultant quality

eatures, weightings should be considered to give higher priorities to

hose parameters for being considered in the fuzzy association rules

nd (5) in reality, a process parameter setting is a crucial issue due to

ts great impact on the finished quality. Small changes of the process

arameters are regarded as less complex, and manufacturers are al-

ays willing to minimize this complexity by reducing the number of

rocess parameter settings in different departments and processes.

owever, in the paper, the sGAPMS only considers the minimization

f the variance between the actual and estimated quality features of

he products. It is suggested that, when developing expert and intel-

igent system for production process control and monitoring, other

actors such as the complexity of the process change could also be

ncorporated.
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