
Toward More Robust Automatic Analysis of Student Program Outputs
for Assessment and Learning

Chung Keung Poon
School of Computing and Information Sciences

Caritas Institute of Higher Education
Hong Kong

ckpoon@cihe.edu.hk

Tak-Lam Wong
Department of Mathematics and Information Technology

The Hong Kong Institute of Education
Hong Kong

tlwong@ied.edu.hk

Y. T. Yu, Victor C. S. Lee, Chung Man Tang
Department of Computer Science

City University of Hong Kong
Hong Kong

{csytyu, csvlee}@cityu.edu.hk, c.m.tang@my.cityu.edu.hk

Abstract—Automated analysis and assessment of students’
programs, typically implemented in automated program
assessment systems (APASs), are very helpful to both students
and instructors in modern day computer programming classes.
The mainstream of APASs employs a black-box testing
approach which compares students’ program outputs with
instructor-prepared outputs. A common weakness of existing
APASs is their inflexibility and limited capability to deal with
admissible output variants, that is, outputs produced by
acceptable correct programs that differ from the instructor’s.
This paper proposes a more robust framework for
automatically modelling and analysing student program
output variations based on a novel hierarchical program
output structure called HiPOS. Our framework assesses
student programs by means of a set of matching rules tagged to
the HiPOS, which produces a better verdict of correctness. We
also demonstrate the capability of our framework by means of
a pilot case study using real student programs.

Keywords- automated assessment technology; computer
science education; learning computer programming; program
output variant; student program analysis

I. INTRODUCTION
Computer science educators have unequivocally reported

the many facets of difficulties in the teaching and learning of
computer programming [2][19]. One of the key success
factors to overcome these difficulties is to provide extensive
exercises for students to practise their coding and debugging
skills [11][16][19]. While setting appropriate exercises and
practice tasks for students is by no means easy, assessment
of students’ work and provision of timely and quality
feedback are even more challenging due to the sheer volume
of effort involved [8][18][26]. In response, universities
worldwide have developed automated program assessment
systems (APASs) [6][12][30], which are now routinely used
in conventional classes as well as personalized and blended
learning courses [24].

Different APASs vary in their designs and features, but
the majority of them possess the core function of assessing
the functional correctness of students’ programs. This is
typically done by automatically executing students’
programs against a suite of pre-defined test cases and
comparing the programs’ actual outputs with the instructor’s
expected outputs. The latter task requires a mechanism,
technically known as a test oracle, for determining the
correctness of program outputs [27]. In the field of software
testing, the general problem of test oracle automation is well
known to be challenging. Implementation of test oracles in
existing APASs is often too simplistic, rigid and incapable of
being tailored to support the intended educational outcomes
of the exercises [7][25]. This is because multiple correct (or
admissible) programming solutions to an exercise may
produce different outputs (called output variants). A
program which the human instructor accepts to be correct (or
admissible) could be inappropriately rejected by a rigid test
oracle in an APAS. This phenomenon is common and has
been a root cause of many educationally undesirable effects
on teaching and learning that can substantially compromise
the benefits of an APAS in practice [2][11][21][25][30].
Such a technical limitation of APASs is precisely the
research problem that we are going to address in this paper.

The rest of this paper is organized as follows. Section II
reviews current practice and related work. In Section III, we
propose a robust framework for automatically modelling and
analysing student program output variations based on a novel
structure called HiPOS that has been inspired by research
work in the areas of natural language processing and
information retrieval. Our framework assesses student
programs by using a set of matching rules which produces a
better verdict of program output correctness. Section IV
presents a pilot case study that demonstrates the capability of
our framework applied to the assessment of real student
programs with encouraging results. Finally, Section V
concludes this paper.

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.208

780

II. CURRENT PRACTICE AND RELATED WORK

A. The Test Oracle Problem in APASs
Previous research has studied the technical issues in core

APAS functions (such as course administration, assignment
and feedback management) [6] as well as explored means of
exploiting an APAS or extending its functions to improve
teaching and learning. Some of the researched issues are
plagiarism detection [14], grading styles [11], authoring and
design of exercises [21], assessment of students’ testing
skill [29], and generation of feedback to students [8][16], etc.

In this paper, our focus is on the assessment of functional
correctness of students’ programs. Existing APASs usually
assess the correctness of the student’s program by executing
it with a suite of instructor’s tests. The program is deemed
correct if its (actual) output in every test run is accepted to be
correct. A mechanism to determine the correctness of
outputs is known as a test oracle [27]. Generally, test oracle
automation is very challenging. But in assessing student
programs, the instructor normally has either a correct
program or the exact correct outputs in mind. As such, the
oracle problem is typically circumvented by using the output
comparison method [2][12][19], which matches the actual
output texts with the correct ones. Most of the well-known
APASs, such as BOSS [14], Ceilidh/CourseMarker [11],
Curator [4], HoGG [18], PASS [30] and PETCHA [21], use
this method in either its rudimentary or an adapted form.
The output comparison method not only works for text-based
programs which return texts as outputs, it may also be
adapted to non-text-based programs by using wrapper code
to convert their outputs into text strings [18]. Other forms of
outputs, such as GUI, can be handled in different ways [2].

While the output comparison method generally works
well for exercises with unambiguously correct outputs, it can
also be unsatisfactory for exercises with multiple correct (or
admissible) solutions which produce output variants, that is,
outputs that deviate from the expected [25]. For example,
students are often insensitive to small deviations in spaces
and punctuations. When each actual output deviates from
the expected “slightly”, an APAS with a naïve test oracle
easily rejects the whole program as incorrect. The instructor
could then have a hard time explaining why the program is
treated as wrong when the outputs are indistinguishable to
the student’s eye. These cases were common [1][30],
causing students frustrations (spending hours on “invisible”
bugs), confusions and feeling of being unfairly or harshly
treated. They gave comments like “Sometimes it is right to
you but wrong to the automark” or “It’s over-sensitive” [22].
Some complained their APAS to be “too fussy” or “too
picky with spaces” [14], “dangerously precise”,
“problematic” or “[taking] up much of my time debugging
missing spaces in the output”. The test oracle problem in
APAS is widely recognized, yet seldom formally researched.

B. Strategies Used in Practice
To avoid conflicts with students, many instructors resort

to writing “air-tight” program specifications with unusually
restrictive and ultra-fine formatting details for ensuring
unambiguity of correct outputs [13]. Students are also pre-

warned that strict conformance is demanded [4]. Such a
strategy may reduce student complaints but not dissatisfaction.
It is also counter-educational: it renders the exercises
spurious, limits the types of exercises, distracts students from
the essentials of the exercise, and inhibits creativity [6][13].

In reviewing many influential APASs, Douce et al. [6]
summarized the main disadvantage of using an APAS as
“the restrictions that apply to what can be assessed
automatically, that is, only clearly defined questions with
completely specified interface for the overall solution”, and
that “an assessment engine cannot award additional marks
for creative design or innovative solutions”. Frontline
educators also echoed that the rigidity in output assessment
as the main drawback of an APAS [1].

Apart from ultra-fine specification, there is a filtering
strategy which enhances APASs by filtering out certain
characters (usually whitespaces or punctuation marks) and
performing simple character conversions (such as converting
all letters into lowercase) before comparing the outputs
[2][14][30]. This strategy is popular due to its technical
simplicity. Usually based on ad hoc rules, this strategy is
only effective in some cases but not generally. Some
researchers adopt an avoidance strategy, such as completely
avoiding output variants by using a unit testing framework
[29] or requesting students to write partial programs (drivers
or stubs) so that the APAS only needs to test return values
which are either unformatted or uniformly formatted by
some custom wrapper code [21]. But strict unambiguity can
be impractical (which needs to list all cases), unreasonable
(for instance, why is 2.3 admissible but not the more
precise value 2.30?), undesirable (when formatting itself is
a goal of the exercise, e.g., “generate a calendar of the
month”), expensive (time-consuming to design) and
unwelcomed (stripping away creativity and interests) [13].

C. Existing Formal Approaches
Some formal approaches have been proposed to increase

the flexibility of output matching in APASs. Some APASs
require the instructor to write regular expressions [18], shell
scripts [12] or parser scripts using lex and yacc [13] to
recognize admissible variants by pattern matching. This
strategy does relax the test oracle’s rigidity, but not all
instructors would like to write scripts for every exercise.
Even if the instructor is competent, the scripts can be error-
prone and tedious to write. Also, the limited expressiveness
of simple scripting will restrict their matching capability.
These drawbacks fundamentally hinder the widespread
adoption of such scripting strategies.

Recently, finer and more elaborate frameworks have
been proposed that promise a better solution to the problem.
For example, Tang et al. [25] adopt a token pattern approach
(TPA) framework to capture the program output structure so
that fine-grained matching rules can be designed for the
components of the expected output and fed into an APAS for
automatic processing without the need to write scripts.

Encouraging success with the use of the TPA framework
has been reported in the literature [26]. For example,
consider the programming exercise Ex.1 as follows.

781

When the input is "56 81 86", an expected output is:
S0: "The average of 3 numbers is 74.33."

Apart from S0, the instructor may also consider the
following actual outputs admissible because, to a human
interpreter, they have essentially the same meaning as S0.
S1: "Mean of 3 numbers: 74.3333"
S2: "74.33 is the average of 3 numbers."

The expected output S0 has a sentence-like structure with
two components containing values that vary among different
test cases, namely, "3" and "74.33". In the TPA
framework, the output text is split into component items
called tokens to capture its meaningful parts of information.
A token pattern is a string of tokens extracted from the
expected output, each token being tagged with its type, value
and associated matching rules. Matching rules are criteria
for determining correctness when the expected output token
is compared with the corresponding actual output token.
With suitable choices of matching rules [26] that ignore the
non-essential items (such as the word "is" and the fullstop
"." in S0,) and allow the use of synonyms (such as "Mean"
in place of "average") and slightly different degrees of
precision of the key numeric values, the TPA framework can
automatically accept S1 as an admissible output variant.
However, it was observed that some exercises are notably
harder to assess automatically than others [23]. Also,
modelled as a sequence structure, a token pattern in the TPA
framework may be unable to capture the characteristics of
certain types of outputs, such as S2 in which the subject and
object of the sentence are reversed. Inspired by the TPA
framework, this paper proposes a more robust framework
that represents the program output as a tree-like structure
based on natural language processing (NLP) models.

A different framework is proposed by Fonte et al. [7]
using a Flexible Dynamic Analyzer (FDA) which compares
the meaning of program outputs and expected outputs by
performing a semantic-similarity analysis. They designed a
domain-specific language called Output Semantic-Similarity
Language (OSSL) to specify the output structure and
semantics as the basis for the desired comparison and
awarding partial marks for partially correct outputs.
However, there are some unresolved issues in the FDA
framework. First, the scalability of the framework is unclear.
In general, there can be a large number of admissible output
variants for a test case. When a program exercise requires a
large number of test cases to verify its correctness, the effort
of manually listing all output variants of every test case can
be very tedious and easily become intractable. Second, when
the output is not just a simple construct (such as sequence or
set) but a complex composition of a number of elementary
items, it is also unclear how the framework can specify the
output structure as well as its different components, both of
which in general may vary among different test cases.

III. THE HIPOS FRAMEWORK

A. Problem Definition
Like TPA, our proposed framework also begins with

tokenization of the expected output. Let us first present the
general problem in a formal notation. Denote the expected
output by the sequence representation as

 �� � ����	�
 �����
 �
 �����
� �,

where �����, refers to the j-th token of S0 and |S0| refers to the
length of S0 (that is, the number of tokens in S0). We also
denote the actual output produced by the program written by
student i as Si, which is an output variant also represented as
a sequence of tokens, that is, �� � ����	�
 �����
 �
 �����

� �.
TABLE I shows a sample of the tokenized expected output
S0 and output variants S1 and S2 for the exercise Ex.1.

Formally, the test oracle problem for an APAS can be
defined as follows: Given an expected program output S0 and
a set of matching rules M, the Admissible Output Variant
Problem is how to automatically determine the admissibility
of an output variant Si with respect to S0 and M.

Like TPA, the matching rules in our framework can be
customized by individual instructors. Ideally, an APAS
should automatically generate default matching rules that
specify the instructor’s assessment requirements, but a one-
size-fits-all default is possible only when all instructors use
the same judgment criteria. A recent exploratory study [24]
has demonstrated that different instructors may have
reasonably good overall agreement in the admissibility of
output variants, but the agreement is, unsurprisingly, not
100%. With this regard, a user-friendly and flexible
mechanism is desirable for instructors to design and
customize the matching rules to suit their teaching needs.

B. HiPOS and Program Output Assessment
To obtain a better verdict of correctness of different

output variants, we have designed an ordered tree-like
structure called Hierarchical Program Output Structure
(HiPOS) to model the program outputs. Formally, let the
ordered tree Hi be the HiPOS representing a particular
program output Si. Each Hi consists of two different types of
nodes, namely, leaves and internal nodes. Each leaf of Hi,
denoted by ������ , corresponds to the token ����� of the
program output. Let ������ be the k-th internal node of Hi.
The subtree rooted at an internal node corresponds to the
block of tokens that together represent a meaningful part of
the program output.

Ex.1: Write a program that asks the user to enter 3
numbers, obtains the 3 numbers from the user and
prints a message showing the average of the 3 numbers.

TABLE I. TOKENIZATION OF EXPECTED OUTPUT AND OUTPUT VARIANTS

Tokens

��
� 	

��
� �

��
� �

��
� �

��
� �

��
� �

��
� �

��
�

Expected
Output S0 The average of 3 numbers is 74.33 .

Output
Variant S1 Mean of 3 numbers : 74.3333

Output
Variant S2 74.33 is the average of 3 numbers .

782

For example, Figure 1 shows the HiPOSs of the expected
output S0 and the output variant S1. Each internal node of a
HiPOS is labelled by a tag in the tagset used for natural
language parsing [20]. The parsed tree models the syntactic
structure of a sentence in natural language processing (NLP),
which is widely used for document summarization [9],
information extraction [15] and information retrieval [17].
In particular, our problem bears similarity with Web infor-
mation extraction because the pages of most commercial
Web sites are also automatically generated by computer
programs and NLP techniques are commonly utilized to
analyze the similarity and difference between Web pages in
order to extract useful and relevant information [5]. Ex.1
requires the learners to write a program to generate a
message about the average of three numbers, which is
expected to be akin to computer program generated texts.
Inspired by the similarity of the tasks, we adopt an automatic
natural language parser [3] to construct the two HiPOSs.

Based on the HiPOS of the expected output, an APAS
can automatically generate a set of frequently used matching
rules as default, which the instructor may customize if
desired, and tag them to the appropriate nodes of the HiPOS.

Instead of comparing the two HiPOSs (in Figure 1) as a
whole, which is a tree comparison problem, they will be
matched in parts successively. Figure 1(a) shows the HiPOS
H0 of S0 tagged with matching rules chosen by the instructor.
Consider S1: "Mean of 3 numbers: 74.3333",
whose HiPOS H1 is depicted in Figure 1(b). The matching
rule “The result needs to contain at least one numeric
token.”, denoted as Numeric Tokens+ and tagged to the
root node of H0, will firstly be triggered to check if S1
contains at least one numeric token. Our framework will then
traverse H1 using depth-first-search and check if the part of
the sentence represented by any subtree of H1 is similar in
semantics to the part "The average of 3 numbers"
of S0. Our framework finds that the phrase "Mean of 3
numbers", represented by the subtree of H1 rooted at the
internal node labelled VP , satisfies the corresponding rule
“The semantic similarity value needs to exceed 0.9.”,
denoted as semantic similarity > 0.9 in Figure 1(a),
according to [10] (see also the online phrase similarity service
provided by UMBC [28]). Next, H1 is traversed to search for
the part "is 74.33" (or one with the same semantics) of S0.
Note that the leaf labelled VBZ (containing the word "is")
serves as a “wildcard” according to the tagged matching rule
“This token matches any token, including Null.”, denoted
as Null . Hence, it matches the internal node of H1 labelled

: ,containing ":". Moreover, the leaf of H0 containing
"74.33" matches the leaf shown as 74.3333 of H1
because the latter satisfies the rule “The token needs to
match with 2 or more decimal places.”, tagged to the former
and denoted as ≥ 2 decimals . Finally, matching of the last
leaf of H0 containing "." may be omitted as it is tagged with
the rule denoted as Null in Figure 1(a). Thus, S1 will be
considered admissible though it is not exactly the same as S0.

In a similar manner, our framework can automatically
determine that S2: "74.33 is the average of 3
numbers." is admissible despite the reversal of subject and
object of the sentence, which is allowed according to the
matching rule “Allow different orders of the subtrees.”,
denoted as unordered and tagged to the internal node
labelled S just below the root node of H0. Limited by space,
further details of the comparison are omitted here.

IV. A CASE STUDY
We conducted a case study to evaluate the effectiveness

of our framework by comparing its verdicts of admissibility
of program outputs with those produced by an existing
APAS. We collected 18 programs written by computer
science undergraduate students of a local university. They
were studying an introductory course on C++ programming.
They were required to attend lectures and tutorials every
week. In one of the tutorials, students were asked to work on
an exercise Ex.2 about the use of “array” as shown below.

(b) HiPOS H1 of S1: Mean of 3 numbers: 74.3333.

(a) HiPOS H0 of S0: The average of 3 numbers is 74.33.

74.33

numbers

VPunordered .

S

Equal

Equal

Equal

Null

DT

of

NN IN NP

CDaverage NNSThe

3

Null

NP PP

Null

VBZ NP

CDis
Null

.
NPsemantic similarity > 0.9

≥
2 decimals

VP

RootNumeric Tokens+

unordered

Root

of

CD

IN NP

CD NNS

numbers3

NP

PP :VBN

Mean

SINV

VP :

74.3333

Figure 1. The HiPOSs of the expected output S0 and the output variant S1.

Note: (1) Each internal node of the HiPOS is labelled by a tag used for
natural language parsing. (S=Simple declarative clause;
NP=Noun phrase; VP=Verb phrase; PP=Personal pronoun;
DT=Determiner; NN=Noun, singular or mass; IN=Preposition
or subordinating conjunction; CD=Cardinal number;
NNS=Noun, plural; VBZ=Verb, 3rd person singular present)

 (2) Determination of admissibility of a program output is based on
the HiPOS H0 and tagged matching rules of the expected output.
The shaded boxes (yellow or gray) in H0 refer to the instructor-
specified matching rules. The yellow shapes (boxes/ovals) with
dotted edges in both HiPOSs refer to the matching rules or nodes
triggered for comparison in our examples.

783

Upon completion of this tutorial, students were expected
to be able to use one-dimensional array to solve relevant
problems. The instructor designed a number of test cases for
testing students’ programs, including the example input and
output shown in Ex.2. The existing APAS adopted in this
study assessed the correctness of a program by directly
comparing the actual output and the expected output,
allowing limited variation in the actual output by trimming
blanks at the beginning and end of the text string and
performing character case conversion before comparison. In
parallel, we applied our framework to determine the
admissibility of students’ program outputs. For each output,
the corresponding HiPOS was automatically generated by
the natural language parser of our framework. Figure 2
shows the HiPOS of the example output and the instructor-
specified matching rules. Although the output was not in the
form of a grammatical sentence or paragraph, the natural
language parser could still successfully parse it to form an
ordered tree-like structure as shown in Figure 2.

Among the 18 programs submitted by students, there
were 9 different output variants only, as shown in TABLE II.
Output 1 was exactly the same as the expected output.
Outputs 2, 3 and 4 were all rejected as inadmissible by the
existing APAS. However, these output variants were
actually admissible as judged by the instructor. Indeed,
Output 2 differs from the expected output only by the
precision used for printing the average value but still satisfies
the specified matching rule denoted as ≥ 0 decimal .
Output 3 deviates from the expected output only by the
insignificant formatting spaces around the equality sign.
Output 4 was produced by the unexpected use of the integer
data type, but this is still acceptable as it is not relevant to the
primary objective of the exercise, and the rule only specifies
the average value to match with 0 or more decimal places.

Outputs 5 and 6 were “partially admissible” because they
satisfy all the matching rules except the one denoted
as semantic similarity > 0.9 and tagged to a node labelled
NP in Figure 2. However, the instructor could always adjust
this matching rule by deleting it or reducing the similarity
threshold 0.9 if deemed appropriate according to needs.
Output 7 violated the rule denoted as Numeric Tokens+ and
tagged to the root node in Figure 2, and was rightly rejected
as inadmissible. Finally, both Outputs 8 and 9 were
considered inadmissible because they did not satisfy the
matching rules, denoted as Exact , that required printing the
exact bar charts of the marks.

To conclude, in this case study, our framework could
automatically assess the admissibility of output variants in
line with what the instructor would have in mind.

NP

Root

NNS

33.33

CDNNP

≥
0 decim

al

Null

NNP

average =

NPsemantic similarity > 0.9

NP

NP
Equal

Exact

Exact

**

Exact

unordered

RootNumeric Tokens+

Figure 2. The HiPOS of the example expected output for Ex. 2.

Note: See explanatory notes in Figure 1. (NNP=Proper noun, singular)

Ex.2: Write a program such that it first accepts an integer
n (1 < n � 20) which represents the number of
students in a class. For each student, read the student's
mark m (0 � m � 50). Store all marks into an array.

After all marks are read, the program prints the
average mark and the bar chart of the marks. You may
assume that the input is valid (that is, data type is
correct and the integers are within the valid range).

Example input:
3 30 20 50

Example output for the above input:
Average = 33.33

**

TABLE II. OUTPUT VARIANTS PRODUCED BY STUDENTS’ PROGRAMS

Output
ID Output variants (‘↵’ denotes the newline character)
1 Average = 33.33↵

******************************↵
********************↵
**↵

2 Average = 33.3333↵
******************************↵
********************↵
**↵

3 Average=33.33↵
******************************↵
********************↵
**↵

4 Average = 33↵
******************************↵
********************↵
**↵

5 33↵
******************************↵
********************↵
**↵

6 33.33↵
******************************↵
********************↵
**↵

7 ******************************↵
********************↵
**↵

8 Average = 33.33↵

9 Average = 33.3333↵

784

V. CONCLUSION
We have presented a robust and adaptable framework for

automatically determining the admissibility of students’
submitted programs. We employ a natural language parser
to construct a novel Hierarchical Program Output Structure
(HiPOS) to effectively capture the relations of the output
tokens. The APAS can automatically tag a set of frequently
used matching rules to the HiPOS of the expected output as
the automated criteria to determine the correctness of
students’ program outputs. The matching rules can be
customized by the instructor to meet their teaching needs.
To evaluate our framework, we have conducted a case study
to analyse the output variants produced by the programs that
were written by a group of computer science students.
Compared with the performance of an existing APAS, our
framework could more accurately assess the admissibility of
output variants in accordance with the instructor’s criteria.

ACKNOWLEDGMENT
The work described in this paper was fully supported by

a grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (Project No.
UGC/FDS11/E02/15).

REFERENCES
[1] Academia Stack Exchange, Use of automated assessment of

programming assignments. Last accessed: 20 December 2015.
http://academia.stackexchange.com/questions/20578/use-of-automated-
assessment-of-programming-assignments

[2] K. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15,
no. 2, pp. 83–102, 2005.

[3] D. Chen and C.D. Manning, “A fast and accurate dependency parser
using neural networks,” Proc. Conference on Empirical Methods in
Natural Language Processing, pp. 740–750, 2014.

[4] Curator: an Electronic Submission Management Environment,
Computer Science @ Virginia Tech. Last accessed: 20 December
2015. http://courses.cs.vt.edu/curator/

[5] B.B. Dalvi, W.W. Cohen, and J. Callan, “Websets: Extracting sets of
entities from the web using unsupervised information extraction,”
Proc. ACM International Conference on Web Search and Data
Mining, pp. 243–252, 2012.

[6] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based
assessment of programming: A review,” ACM Journal of Educational
Resources in Computing, vol. 5, no. 3, Article 4, 2005.

[7] D. Fonte, D. da Cruz, A.L. Gançarski, and P.R. Henriques, “A
flexible dynamic system for automatic grading of programming
exercises,” Proc. Symposium on Languages, Applications and
Technologies (SLATE’13), pp. 129–144, 2013.

[8] S. Gulwani, I. Radi�ek, and F. Zuleger, “Feedback generation for
performance problems in introductory programming assignments,”
Proc. ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2014), pp. 41–51.

[9] U. Hahn and I. Mani, “The challenges of automatic summarization,”
Computer, vol. 33, no. 11, pp. 29–36, 2000.

[10] L. Han, A. Kashyap, T. Finin, J. Mayfield, and J. Weese, “UMBC
EBIQUITY-CORE: Semantic textual similarity systems,” Proc.
Joint Conference on Lexical and Computational Semantics,
pp. 44–52, 2013.

[11] C. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas, “Automated
assessment and experiences of teaching programming,” ACM Journal
on Educational Resources in Computing, vol. 5, no. 3, Article 5, 2005.

[12] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming
assignments,” Proc. Koli Calling International Conference on
Computing Education Research (Koli Calling’10), pp. 86–93, 2010.

[13] D. Jackson, “Using software tools to automate the assessment of student
programs,” Computers and Education, vol. 17, no. 2, pp. 133–143, 1991.

[14] M. Joy, N. Griffiths, and R. Royatt, “The BOSS online submission
and assessment system,” ACM Journal on Educational Resources in
Computing, vol. 5, no. 3, Article 2, 2005.

[15] Y. Jung, K. Stratos, and L.P. Carloni, “LN-Annote: An alternative
approach to information extraction from emails using locally-
customized named-entity recognition,” Proc. International
Conference on World Wide Web, pp. 538–548, 2015.

[16] K.M.Y. Law, V.C.S. Lee, and Y.T. Yu, “Learning motivation in
e-learning facilitated computer programming courses,” Computers
and Education, vol. 55, no. 1, pp. 218–228, 2010.

[17] D.D. Lewis and K.S. Jones, “Natural language processing for
information retrieval,” Communications of the ACM, vol. 39, no. 1,
pp. 92–101, 1996.

[18] D.S. Morris, “Automatic grading of student’s programming assign-
ments: An interactive process and suite of programs,” Proc. ASEE/
IEEE Frontiers in Education Conference (FIE 2003), pp. S3F-1–6.

[19] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devin, and J. Paterson, “A survey of literature on the teaching of
introductory programming,” ACM SIGCSE Bulletin, vol. 39, no. 4,
pp. 204–223, 2007.

[20] The Penn Treebank Project. Last accessed: 20 December 2015.
https://www.cis.upenn.edu/~treebank/

[21] R. Queirós and J.P. Leal, “PETCHA – A programming exercises teach-
ing assistant,” Proc. Annual Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE 2012), pp. 192–197.

[22] H. Suleman, “Automatic marking with Sakai,” Proc. Research
Conference of the South African Institute of Computer Scientists and
Information Technologists, pp. 229–236, 2008.

[23] C.M. Tang, Automated Testing of Student Programs using Token
Patterns, MPhil thesis, Department of Computer Science, City
University of Hong Kong, June 2011.

[24] C.M. Tang and Y.T. Yu, “An exploratory study on instructors’
agreement on the correctness of computer program outputs,” Proc.
International Conference on Hybrid Learning (ICHL 2013), Lecture
Notes in Computer Science (LNCS), vol. 8038, pp. 69–80.

[25] C.M. Tang, Y.T. Yu and C.K. Poon, “An approach towards automatic
testing of student programs using token patterns,” Proc. International
Conference on Computers in Education (ICCE 2009), pp. 188–190.

[26] C.M. Tang, Y.T. Yu, and C.K. Poon, “An experimental prototype for
automatically testing student programs using token patterns,” Proc.
International Conference on Computer Supported Education
(CSEDU 2010), pp. 144–149.

[27] T.H. Tse, F.C.M. Lau, W.K. Chan, P.C.K. Liu, and C.K.F. Luk,
“Testing object-oriented industrial software without precise oracles or
results,” Communications of the ACM, vol. 50, no. 8, pp. 78–85, 2007.

[28] UMBC Phrase Similarity Service. Last accessed: 20 December 2015.
http://swoogle.umbc.edu/SimService/phrase_similarity.html

[29] Web-CAT, The Web-CAT Community. Last accessed: 20 December
2015. http://web-cat.org/

[30] Y.T. Yu, C.K. Poon, and M. Choy, “Experiences with PASS:
Developing and using a Programming Assignment aSsessment
System,” Proc. International Conference on Quality Software
(QSIC 2006), pp. 360–365.

785

