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Abstract—Automated analysis and assessment of students’ 
programs, typically implemented in automated program 
assessment systems (APASs), are very helpful to both students 
and instructors in modern day computer programming classes.  
The mainstream of APASs employs a black-box testing 
approach which compares students’ program outputs with 
instructor-prepared outputs.  A common weakness of existing 
APASs is their inflexibility and limited capability to deal with 
admissible output variants, that is, outputs produced by 
acceptable correct programs that differ from the instructor’s.  
This paper proposes a more robust framework for 
automatically modelling and analysing student program 
output variations based on a novel hierarchical program 
output structure called HiPOS.  Our framework assesses 
student programs by means of a set of matching rules tagged to 
the HiPOS, which produces a better verdict of correctness.  We 
also demonstrate the capability of our framework by means of 
a pilot case study using real student programs. 

Keywords- automated assessment technology; computer 
science education; learning computer programming; program 
output variant; student program analysis 

I. INTRODUCTION 
Computer science educators have unequivocally reported 

the many facets of difficulties in the teaching and learning of 
computer programming [2][19].  One of the key success 
factors to overcome these difficulties is to provide extensive 
exercises for students to practise their coding and debugging 
skills [11][16][19].  While setting appropriate exercises and 
practice tasks for students is by no means easy, assessment 
of students’ work and provision of timely and quality 
feedback are even more challenging due to the sheer volume 
of effort involved [8][18][26].  In response, universities 
worldwide have developed automated program assessment 
systems (APASs) [6][12][30], which are now routinely used 
in conventional classes as well as personalized and blended 
learning courses [24]. 

Different APASs vary in their designs and features, but 
the majority of them possess the core function of assessing 
the functional correctness of students’ programs.  This is 
typically done by automatically executing students’ 
programs against a suite of pre-defined test cases and 
comparing the programs’ actual outputs with the instructor’s 
expected outputs.  The latter task requires a mechanism, 
technically known as a test oracle, for determining the 
correctness of program outputs [27].  In the field of software 
testing, the general problem of test oracle automation is well 
known to be challenging.  Implementation of test oracles in 
existing APASs is often too simplistic, rigid and incapable of 
being tailored to support the intended educational outcomes 
of the exercises [7][25].  This is because multiple correct (or 
admissible) programming solutions to an exercise may 
produce different outputs (called output variants).  A 
program which the human instructor accepts to be correct (or 
admissible) could be inappropriately rejected by a rigid test 
oracle in an APAS.  This phenomenon is common and has 
been a root cause of many educationally undesirable effects 
on teaching and learning that can substantially compromise 
the benefits of an APAS in practice [2][11][21][25][30].  
Such a technical limitation of APASs is precisely the 
research problem that we are going to address in this paper. 

The rest of this paper is organized as follows.  Section II 
reviews current practice and related work.  In Section III, we 
propose a robust framework for automatically modelling and 
analysing student program output variations based on a novel 
structure called HiPOS that has been inspired by research 
work in the areas of natural language processing and 
information retrieval.  Our framework assesses student 
programs by using a set of matching rules which produces a 
better verdict of program output correctness.  Section IV 
presents a pilot case study that demonstrates the capability of 
our framework applied to the assessment of real student 
programs with encouraging results.  Finally, Section V 
concludes this paper. 
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II. CURRENT PRACTICE AND RELATED WORK 

A. The Test Oracle Problem in APASs 
Previous research has studied the technical issues in core 

APAS functions (such as course administration, assignment 
and feedback management) [6] as well as explored means of 
exploiting an APAS or extending its functions to improve 
teaching and learning.  Some of the researched issues are 
plagiarism detection [14], grading styles [11], authoring and 
design of exercises [21], assessment of students’ testing 
skill [29], and generation of feedback to students [8][16], etc. 

In this paper, our focus is on the assessment of functional 
correctness of students’ programs.  Existing APASs usually 
assess the correctness of the student’s program by executing 
it with a suite of instructor’s tests.  The program is deemed 
correct if its (actual) output in every test run is accepted to be 
correct.  A mechanism to determine the correctness of 
outputs is known as a test oracle [27].  Generally, test oracle 
automation is very challenging.  But in assessing student 
programs, the instructor normally has either a correct 
program or the exact correct outputs in mind.  As such, the 
oracle problem is typically circumvented by using the output 
comparison method [2][12][19], which matches the actual 
output texts with the correct ones.  Most of the well-known 
APASs, such as BOSS [14], Ceilidh/CourseMarker [11], 
Curator [4], HoGG [18], PASS [30] and PETCHA [21], use 
this method in either its rudimentary or an adapted form.  
The output comparison method not only works for text-based 
programs which return texts as outputs, it may also be 
adapted to non-text-based programs by using wrapper code 
to convert their outputs into text strings [18].  Other forms of 
outputs, such as GUI, can be handled in different ways [2]. 

While the output comparison method generally works 
well for exercises with unambiguously correct outputs, it can 
also be unsatisfactory for exercises with multiple correct (or 
admissible) solutions which produce output variants, that is, 
outputs that deviate from the expected [25].  For example, 
students are often insensitive to small deviations in spaces 
and punctuations.  When each actual output deviates from 
the expected “slightly”, an APAS with a naïve test oracle 
easily rejects the whole program as incorrect.  The instructor 
could then have a hard time explaining why the program is 
treated as wrong when the outputs are indistinguishable to 
the student’s eye.  These cases were common [1][30], 
causing students frustrations (spending hours on “invisible” 
bugs), confusions and feeling of being unfairly or harshly 
treated.  They gave comments like “Sometimes it is right to 
you but wrong to the automark” or “It’s over-sensitive” [22].  
Some complained their APAS to be “too fussy” or “too 
picky with spaces” [14], “dangerously precise”, 
“problematic” or “[taking] up much of my time debugging 
missing spaces in the output”.  The test oracle problem in 
APAS is widely recognized, yet seldom formally researched.  

B. Strategies Used in Practice 
To avoid conflicts with students, many instructors resort 

to writing “air-tight” program specifications with unusually 
restrictive and ultra-fine formatting details for ensuring 
unambiguity of correct outputs [13].  Students are also pre-

warned that strict conformance is demanded [4].  Such a 
strategy may reduce student complaints but not dissatisfaction.  
It is also counter-educational: it renders the exercises 
spurious, limits the types of exercises, distracts students from 
the essentials of the exercise, and inhibits creativity [6][13]. 

In reviewing many influential APASs, Douce et al. [6] 
summarized the main disadvantage of using an APAS as 
“the restrictions that apply to what can be assessed 
automatically, that is, only clearly defined questions with 
completely specified interface for the overall solution”, and 
that “an assessment engine cannot award additional marks 
for creative design or innovative solutions”.  Frontline 
educators also echoed that the rigidity in output assessment 
as the main drawback of an APAS [1]. 

Apart from ultra-fine specification, there is a filtering 
strategy which enhances APASs by filtering out certain 
characters (usually whitespaces or punctuation marks) and 
performing simple character conversions (such as converting 
all letters into lowercase) before comparing the outputs 
[2][14][30].  This strategy is popular due to its technical 
simplicity.  Usually based on ad hoc rules, this strategy is 
only effective in some cases but not generally.  Some 
researchers adopt an avoidance strategy, such as completely 
avoiding output variants by using a unit testing framework 
[29] or requesting students to write partial programs (drivers 
or stubs) so that the APAS only needs to test return values 
which are either unformatted or uniformly formatted by 
some custom wrapper code [21].  But strict unambiguity can 
be impractical (which needs to list all cases), unreasonable 
(for instance, why is 2.3 admissible but not the more 
precise value 2.30?), undesirable (when formatting itself is 
a goal of the exercise, e.g., “generate a calendar of the 
month”), expensive (time-consuming to design) and 
unwelcomed (stripping away creativity and interests) [13]. 

C. Existing Formal Approaches 
Some formal approaches have been proposed to increase 

the flexibility of output matching in APASs.  Some APASs 
require the instructor to write regular expressions [18], shell 
scripts [12] or parser scripts using lex and yacc [13] to 
recognize admissible variants by pattern matching.  This 
strategy does relax the test oracle’s rigidity, but not all 
instructors would like to write scripts for every exercise.  
Even if the instructor is competent, the scripts can be error-
prone and tedious to write.  Also, the limited expressiveness 
of simple scripting will restrict their matching capability.  
These drawbacks fundamentally hinder the widespread 
adoption of such scripting strategies. 

Recently, finer and more elaborate frameworks have 
been proposed that promise a better solution to the problem.  
For example, Tang et al. [25] adopt a token pattern approach 
(TPA) framework to capture the program output structure so 
that fine-grained matching rules can be designed for the 
components of the expected output and fed into an APAS for 
automatic processing without the need to write scripts. 

Encouraging success with the use of the TPA framework 
has been reported in the literature [26].  For example, 
consider the programming exercise Ex.1 as follows. 
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When the input is "56 81 86", an expected output is: 
S0: "The average of 3 numbers is 74.33." 

Apart from S0, the instructor may also consider the 
following actual outputs admissible because, to a human 
interpreter, they have essentially the same meaning as S0. 
S1: "Mean of 3 numbers: 74.3333"  
S2: "74.33 is the average of 3 numbers."  

The expected output S0 has a sentence-like structure with 
two components containing values that vary among different 
test cases, namely, "3" and "74.33".  In the TPA 
framework, the output text is split into component items 
called tokens to capture its meaningful parts of information.  
A token pattern is a string of tokens extracted from the 
expected output, each token being tagged with its type, value 
and associated matching rules.  Matching rules are criteria 
for determining correctness when the expected output token 
is compared with the corresponding actual output token.  
With suitable choices of matching rules [26] that ignore the 
non-essential items (such as the word "is" and the fullstop 
"." in S0,) and allow the use of synonyms (such as "Mean" 
in place of "average") and slightly different degrees of 
precision of the key numeric values, the TPA framework can 
automatically accept S1 as an admissible output variant.  
However, it was observed that some exercises are notably 
harder to assess automatically than others [23].  Also, 
modelled as a sequence structure, a token pattern in the TPA 
framework may be unable to capture the characteristics of 
certain types of outputs, such as S2 in which the subject and 
object of the sentence are reversed.  Inspired by the TPA 
framework, this paper proposes a more robust framework 
that represents the program output as a tree-like structure 
based on natural language processing (NLP) models. 

A different framework is proposed by Fonte et al. [7] 
using a Flexible Dynamic Analyzer (FDA) which compares 
the meaning of program outputs and expected outputs by 
performing a semantic-similarity analysis.  They designed a 
domain-specific language called Output Semantic-Similarity 
Language (OSSL) to specify the output structure and 
semantics as the basis for the desired comparison and 
awarding partial marks for partially correct outputs.  
However, there are some unresolved issues in the FDA 
framework.  First, the scalability of the framework is unclear.  
In general, there can be a large number of admissible output 
variants for a test case.  When a program exercise requires a 
large number of test cases to verify its correctness, the effort 
of manually listing all output variants of every test case can 
be very tedious and easily become intractable.  Second, when 
the output is not just a simple construct (such as sequence or 
set) but a complex composition of a number of elementary 
items, it is also unclear how the framework can specify the 
output structure as well as its different components, both of 
which in general may vary among different test cases. 

III. THE HIPOS FRAMEWORK 

A. Problem Definition 
Like TPA, our proposed framework also begins with 

tokenization of the expected output.  Let us first present the 
general problem in a formal notation.  Denote the expected 
output by the sequence representation as 

 �� � ����	�
 �����
 � 
 ���
��

� �,  

where �����, refers to the j-th token of S0 and |S0| refers to the 
length of S0 (that is, the number of tokens in S0).  We also 
denote the actual output produced by the program written by 
student i as Si, which is an output variant also represented as 
a sequence of tokens, that is, �� � ����	� 
 ����� 
 � 
 ���
��


� �.  
TABLE I shows a sample of the tokenized expected output 
S0 and output variants S1 and S2 for the exercise Ex.1. 

Formally, the test oracle problem for an APAS can be 
defined as follows: Given an expected program output S0 and 
a set of matching rules M, the Admissible Output Variant 
Problem is how to automatically determine the admissibility 
of an output variant Si with respect to S0 and M. 

Like TPA, the matching rules in our framework can be 
customized by individual instructors.  Ideally, an APAS 
should automatically generate default matching rules that 
specify the instructor’s assessment requirements, but a one-
size-fits-all default is possible only when all instructors use 
the same judgment criteria.  A recent exploratory study [24] 
has demonstrated that different instructors may have 
reasonably good overall agreement in the admissibility of 
output variants, but the agreement is, unsurprisingly, not 
100%.  With this regard, a user-friendly and flexible 
mechanism is desirable for instructors to design and 
customize the matching rules to suit their teaching needs.  

B. HiPOS and Program Output Assessment 
To obtain a better verdict of correctness of different 

output variants, we have designed an ordered tree-like 
structure called Hierarchical Program Output Structure 
(HiPOS) to model the program outputs.  Formally, let the 
ordered tree Hi be the HiPOS representing a particular 
program output Si.  Each Hi consists of two different types of 
nodes, namely, leaves and internal nodes.  Each leaf of Hi, 
denoted by ������ , corresponds to the token �����  of the 
program output.  Let ������  be the k-th internal node of Hi.  
The subtree rooted at an internal node corresponds to the 
block of tokens that together represent a meaningful part of 
the program output.   

Ex.1: Write a program that asks the user to enter 3 
numbers, obtains the 3 numbers from the user and 
prints a message showing the average of the 3 numbers. 

TABLE I. TOKENIZATION OF EXPECTED OUTPUT AND OUTPUT VARIANTS 

Tokens 

��
� 	

 

��
� �

 

��
� �

 

��
� �

 

��
� �

 

��
� �

 

��
� �

 

��
�  

 

Expected 
Output S0 The average of 3 numbers is 74.33 .

Output 
Variant S1 Mean of 3 numbers : 74.3333   

Output 
Variant S2 74.33 is the average of 3 numbers .
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For example, Figure 1 shows the HiPOSs of the expected 
output S0 and the output variant S1.  Each internal node of a 
HiPOS is labelled by a tag in the tagset used for natural 
language parsing [20].  The parsed tree models the syntactic 
structure of a sentence in natural language processing (NLP), 
which is widely used for document summarization [9], 
information extraction [15] and information retrieval [17].  
In particular, our problem bears similarity with Web infor-
mation extraction because the pages of most commercial 
Web sites are also automatically generated by computer 
programs and NLP techniques are commonly utilized to 
analyze the similarity and difference between Web pages in 
order to extract useful and relevant information [5].  Ex.1 
requires the learners to write a program to generate a 
message about the average of three numbers, which is 
expected to be akin to computer program generated texts.  
Inspired by the similarity of the tasks, we adopt an automatic 
natural language parser [3] to construct the two HiPOSs. 

Based on the HiPOS of the expected output, an APAS 
can automatically generate a set of frequently used matching 
rules as default, which the instructor may customize if 
desired, and tag them to the appropriate nodes of the HiPOS. 

Instead of comparing the two HiPOSs (in Figure 1) as a 
whole, which is a tree comparison problem, they will be 
matched in parts successively.  Figure 1(a) shows the HiPOS 
H0 of S0 tagged with matching rules chosen by the instructor.  
Consider S1: "Mean of 3 numbers: 74.3333", 
whose HiPOS H1 is depicted in Figure 1(b).  The matching 
rule “The result needs to contain at least one numeric 
token.”, denoted as  Numeric Tokens+  and tagged to the 
root node of H0, will firstly be triggered to check if S1 
contains at least one numeric token.  Our framework will then 
traverse H1 using depth-first-search and check if the part of 
the sentence represented by any subtree of H1 is similar in 
semantics to the part "The average of 3 numbers" 
of S0.  Our framework finds that the phrase "Mean of 3 
numbers", represented by the subtree of H1 rooted at the 
internal node labelled VP , satisfies the corresponding rule 
“The semantic similarity value needs to exceed 0.9.”, 
denoted as  semantic similarity > 0.9  in Figure 1(a), 
according to [10] (see also the online phrase similarity service 
provided by UMBC [28]).  Next, H1 is traversed to search for 
the part "is 74.33" (or one with the same semantics) of S0.  
Note that the leaf labelled VBZ (containing the word "is") 
serves as a “wildcard” according to the tagged matching rule 
“This token matches any token, including Null.”, denoted 
as  Null .  Hence, it matches the internal node of H1 labelled 

: ,containing ":".  Moreover, the leaf of H0 containing 
"74.33" matches the leaf shown as  74.3333  of H1 
because the latter satisfies the rule “The token needs to 
match with 2 or more decimal places.”, tagged to the former 
and denoted as  ≥ 2 decimals .  Finally, matching of the last 
leaf of H0 containing "." may be omitted as it is tagged with 
the rule denoted as  Null  in Figure 1(a).  Thus, S1 will be 
considered admissible though it is not exactly the same as S0. 

In a similar manner, our framework can automatically 
determine that S2: "74.33 is the average of 3 
numbers." is admissible despite the reversal of subject and 
object of the sentence, which is allowed according to the 
matching rule “Allow different orders of the subtrees.”, 
denoted as  unordered  and tagged to the internal node 
labelled S just below the root node of H0.  Limited by space, 
further details of the comparison are omitted here. 

IV. A CASE STUDY 
We conducted a case study to evaluate the effectiveness 

of our framework by comparing its verdicts of admissibility 
of program outputs with those produced by an existing 
APAS.  We collected 18 programs written by computer 
science undergraduate students of a local university.  They 
were studying an introductory course on C++ programming.  
They were required to attend lectures and tutorials every 
week.  In one of the tutorials, students were asked to work on 
an exercise Ex.2 about the use of “array” as shown below. 

(b) HiPOS H1 of S1: Mean of 3 numbers: 74.3333.

(a) HiPOS H0 of S0: The average of 3 numbers is 74.33.

74.33

numbers

VPunordered .

S

Equal

Equal

Equal

Null

DT

of

NN IN NP

CDaverage NNSThe

3

Null

NP PP

Null

VBZ NP

CDis
Null

.
NPsemantic similarity > 0.9

≥
2 decimals

VP

RootNumeric Tokens+

unordered

Root

of

CD

IN NP

CD NNS

numbers3

NP

PP :VBN

Mean

SINV

VP :

74.3333

Figure 1. The HiPOSs of the expected output S0 and the output variant S1. 

Note:  (1) Each internal node of the HiPOS is labelled by a tag used for 
natural language parsing. (S=Simple declarative clause; 
NP=Noun phrase; VP=Verb phrase; PP=Personal pronoun; 
DT=Determiner; NN=Noun, singular or mass; IN=Preposition 
or subordinating conjunction; CD=Cardinal number; 
NNS=Noun, plural; VBZ=Verb, 3rd person singular present) 

 (2) Determination of admissibility of a program output is based on 
the HiPOS H0 and tagged matching rules of the expected output.  
The shaded boxes (yellow or gray) in H0 refer to the instructor-
specified matching rules.  The yellow shapes (boxes/ovals) with 
dotted edges in both HiPOSs refer to the matching rules or nodes
triggered for comparison in our examples. 
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Upon completion of this tutorial, students were expected 
to be able to use one-dimensional array to solve relevant 
problems.  The instructor designed a number of test cases for 
testing students’ programs, including the example input and 
output shown in Ex.2.  The existing APAS adopted in this 
study assessed the correctness of a program by directly 
comparing the actual output and the expected output, 
allowing limited variation in the actual output by trimming 
blanks at the beginning and end of the text string and 
performing character case conversion before comparison.  In 
parallel, we applied our framework to determine the 
admissibility of students’ program outputs.  For each output, 
the corresponding HiPOS was automatically generated by 
the natural language parser of our framework.  Figure 2 
shows the HiPOS of the example output and the instructor-
specified matching rules.  Although the output was not in the 
form of a grammatical sentence or paragraph, the natural 
language parser could still successfully parse it to form an 
ordered tree-like structure as shown in Figure 2. 

Among the 18 programs submitted by students, there 
were 9 different output variants only, as shown in TABLE II.  
Output 1 was exactly the same as the expected output.  
Outputs 2, 3 and 4 were all rejected as inadmissible by the 
existing APAS.  However, these output variants were 
actually admissible as judged by the instructor.  Indeed, 
Output 2 differs from the expected output only by the 
precision used for printing the average value but still satisfies 
the specified matching rule denoted as  ≥ 0 decimal .  
Output 3 deviates from the expected output only by the 
insignificant formatting spaces around the equality sign.  
Output 4 was produced by the unexpected use of the integer 
data type, but this is still acceptable as it is not relevant to the 
primary objective of the exercise, and the rule only specifies 
the average value to match with 0 or more decimal places. 

Outputs 5 and 6 were “partially admissible” because they 
satisfy all the matching rules except the one denoted 
as  semantic similarity > 0.9  and tagged to a node labelled 
NP in Figure 2.  However, the instructor could always adjust 
this matching rule by deleting it or reducing the similarity 
threshold 0.9 if deemed appropriate according to needs.  
Output 7 violated the rule denoted as  Numeric Tokens+  and 
tagged to the root node in Figure 2, and was rightly rejected 
as inadmissible.  Finally, both Outputs 8 and 9 were 
considered inadmissible because they did not satisfy the 
matching rules, denoted as  Exact , that required printing the 
exact bar charts of the marks. 

To conclude, in this case study, our framework could 
automatically assess the admissibility of output variants in 
line with what the instructor would have in mind. 

******************************

NP

Root

NNS

33.33

CDNNP

≥
0 decim

al

Null

NNP

average =

NPsemantic similarity > 0.9

NP

NP
Equal

Exact

********************

Exact

**************************************************

Exact

unordered

RootNumeric Tokens+

Figure 2. The HiPOS of the example expected output for Ex. 2. 

Note: See explanatory notes in Figure 1.  (NNP=Proper noun, singular) 

Ex.2: Write a program such that it first accepts an integer 
n (1 < n � 20) which represents the number of 
students in a class.  For each student, read the student's 
mark m (0 � m � 50).  Store all marks into an array. 

After all marks are read, the program prints the 
average mark and the bar chart of the marks.  You may 
assume that the input is valid (that is, data type is 
correct and the integers are within the valid range). 

Example input: 
3 30 20 50 

Example output for the above input: 
Average = 33.33 
****************************** 
******************** 
**************************************************

TABLE II. OUTPUT VARIANTS PRODUCED BY STUDENTS’ PROGRAMS 

Output 
ID Output variants (‘↵’ denotes the newline character) 
1 Average = 33.33↵ 

******************************↵ 
********************↵ 
**************************************************↵

2 Average = 33.3333↵ 
******************************↵ 
********************↵ 
**************************************************↵

3 Average=33.33↵ 
******************************↵ 
********************↵ 
**************************************************↵

4 Average = 33↵ 
******************************↵ 
********************↵ 
**************************************************↵

5 33↵ 
******************************↵ 
********************↵ 
**************************************************↵

6 33.33↵ 
******************************↵ 
********************↵ 
**************************************************↵

7 ******************************↵ 
********************↵ 
**************************************************↵

8 Average = 33.33↵ 

9 Average = 33.3333↵
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V. CONCLUSION 
We have presented a robust and adaptable framework for 

automatically determining the admissibility of students’ 
submitted programs.  We employ a natural language parser 
to construct a novel Hierarchical Program Output Structure 
(HiPOS) to effectively capture the relations of the output 
tokens.  The APAS can automatically tag a set of frequently 
used matching rules to the HiPOS of the expected output as 
the automated criteria to determine the correctness of 
students’ program outputs.  The matching rules can be 
customized by the instructor to meet their teaching needs.  
To evaluate our framework, we have conducted a case study 
to analyse the output variants produced by the programs that 
were written by a group of computer science students.  
Compared with the performance of an existing APAS, our 
framework could more accurately assess the admissibility of 
output variants in accordance with the instructor’s criteria. 
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