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Longevity risk has recently become a high profile risk among insurers and pension plan sponsors. One 
way to mitigate longevity risk is to build a hedge using derivatives that are linked to mortality indexes. 
Longevity hedging methods are often based on the normality assumption, considering only the variance 
but no other (higher) moments. However, strong empirical evidence suggests that mortality improvement 
rates are driven by asymmetric and fat-tailed distributions, so that existing longevity hedging methods 
should be expanded to incorporate higher moments. This paper fills the gap by adopting a mean-
variance-skewness-kurtosis approach based on non-Gaussian extensions of commonly-used stochastic 
mortality models, formulated in a state-space setting. On the basis of a general representation of these 
models, the authors derive (approximate) analytical expressions for the moments of the present values 
of the hedging instruments and the liability being hedged. These expressions are then integrated with 
a polynomial goal programming model, from which the optimal hedge portfolio is identified. Finally, 
the paper demonstrates the theoretical results with a real mortality data set and a range of hedger 
preferences.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Longevity risk refers to the risk that individuals live longer than expected. The risk creates challenges, not only for the individual who 
needs an income for a period longer than expected after retirement, but also for governments, defined benefit retirement funds, and life 
insurers who face retirement-related liabilities that increase as a result of improved life expectancy.

Roughly speaking, longevity risk is comprised of two components, namely, ‘micro’ and ‘macro’ longevity risks. Micro longevity risk 
refers to the uncertainty surrounding a known, fixed survival distribution. This piece of uncertainty is diversifiable, and is negligible 
when the number of lives in the annuity/pension portfolio is sufficiently large. Macro longevity risk, in contrast, refers to the uncertainty 
associated with the underlying survival distribution itself. Equivalently speaking, it represents the uncertainty associated with the sequence 
of death rates/probabilities that are not yet realized. It is important to note that macro longevity risk is systematic, as any change in the 
underlying survival distribution affects all lives in the portfolio. Although macro longevity risk is not diversifiable, it may be transferred to 
a counterparty who is willing to take it for a risk premium and/or diversification benefits.

The longevity risk market started in the United Kingdom in less than two decades ago. The market provides a platform for institutions 
to transfer their longevity risk exposures through various means, most notably capital market derivatives. In 2007, J.P. Morgan introduced 
the LifeMetrics Index, a mortality index that is composed of age-specific death probabilities in certain populations. The first capital mar-
kets transaction involving the LifeMetrics Index reportedly took place in January 2008 (Blake et al., 2013). In this transaction, Lucida (a 
monoline insurer in the United Kingdom) transferred part of its longevity risk exposures to J.P. Morgan through a derivative known as q-
forward, written on the LifeMetrics index for the male population of England and Wales. Since then, a number of other investment banks, 
including Credit Suisse, Deutsche Börse, Deutsche Bank, Goldman Sachs, and Société Générale, have also launched tradable mortality in-
dexes and written derivative securities on these indexes with insurers and pension plan sponsors in various countries. Longevity-linked 
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securities have become a new class of financial assets, with a potential market size of US$60 to 80 trillion (Michaelson and Mulholland, 
2014).

There are many parallels between macro longevity risk and typical financial risks (e.g., equity and interest rate) in terms of modeling. 
First, to quantify longevity risk and to price longevity-linked securities, an econometric model capturing the stochastic evolution of mortal-
ity rates over time and/or year-of-birth is necessary. Following the spirit of constructing interest rate models which preserve the stylized 
properties of interest rates such as term-structures and mean-reversion (Duan, 2016; Goliński and Zaffaroni, 2016; Lee and Tse, 1991; Tse, 
1998), any econometric model for macro longevity risk should be carefully structured so that the resulting forecasts of future mortality 
are biologically reasonable. For instance, when applied to mortality at pensionable ages, the model should yield projected mortality rates 
that are monotonically increasing with age at any given time point. In addition, as with econometric modeling of typical financial risks, 
the modeler should consider goodness-of-fit to historical data when choosing a macro longevity risk model (Ling and Tong, 2011).

Second, similar to stock returns, mortality improvements are not necessarily (log-)normally distributed. Econometricians have found 
strong empirical evidence supporting the non-normality of stock returns, and have developed various non-normal models by which skew-
ness and excess kurtosis of stock returns can be captured (Bakshi et al., 2003; Mills, 1995; Peiro, 1999). Portfolio optimization methods 
which incorporate higher moments have also been developed accordingly (Harvey et al., 2010; Jondeau and Rockinger, 2006; Prakash et 
al., 2003). On the other hand, there has been a growing concern among researchers working on the field of longevity risk that mortality 
improvements are not normally distributed. Non-normality is evident in the historical mortality improvements of various populations, and 
a number of attempts have been made to relax the normality assumption in typical stochastic mortality models (econometric models for 
macro longevity risk). For instance, Ahmadi and Gaillardetz (2014) extended the Cairns-Blake-Dowd model (a commonly used stochastic 
mortality model) to incorporate skewness and excess kurtosis of mortality improvements. Similar extensions have been considered by 
Giacometti et al. (2009) and Wang et al. (2011, 2013).

The potential non-normality of mortality improvements highlights the need for considering higher moments in developing capital 
markets solutions for longevity risk. In the literature, however, the effectiveness of a longevity risk is typically measured in terms of 
reduction in variance, without considering any higher moment that may also be indicative of the risk inherent to the hedged and unhedged 
positions (Cairns, 2011; Cairns et al., 2014; Li and Hardy, 2011; Zhou and Li, 2017). Furthermore, existing moment-based methods for 
longevity hedge optimization consider either variance only if the cost of hedging is ignored or mean and variance only if the cost of 
hedging is taken into account (Li et al., 2017; Liu and Li, 2017, 2018; Xue et al., 2018; Zhang et al., 2017). These methods are clearly 
inadequate when the distribution of mortality improvements is non-normal and the hedger concerns with, for example, the tail risk 
associated with his/her portfolio on top of volatility. Non-moment-based methods such as longevity Greeks and mortality durations (Li 
and Hardy, 2011; Li and Luo, 2012; Plat, 2011) somewhat ameliorate the problem of having a sole focus on mean and/or variance, but 
they are still unable to incorporate the hedger’s preferences concerning various moments explicitly.

In this paper, we fill the literature gap by proposing a mean-variance-skewness-kurtosis approach to optimizing longevity hedges. In 
the proposed approach, the hedge portfolio (the vector of the notional amounts of the hedging instruments) is optimized when all of 
the first four moments of the distribution of portfolio values are considered simultaneously. The optimization challenge is overcome by 
employing the polynomial goal programming method, previously considered by Lai et al. (2006), Leung et al. (2001), Prakash et al. (2003)
and Sun and Yan (2003) in the context of banking and investment. When applied to the context of our research, the polynomial goal 
programming method enables the hedger to connect multiple objectives concerning the four moments, and to specify his/her preference 
concerning each of the four moments. We further augment the polynomial goal programming method to incorporate a budget constraint, 
which guarantees that the (expected) cost of hedging is no greater than a certain fraction of the value of the liability being hedged. This 
additional feature makes our set-up a closer resemblance to real-life situations, in which institutions typically have finite budgets for risk 
management purposes.

The proposed hedging strategy is built on a general state-space representation of stochastic mortality models. The general state-space 
representation encompasses most discrete-time stochastic mortality models used in practice, including the Lee-Carter model (Lee and 
Carter, 1992), the Cairns-Blake-Dowd model (Cairns et al., 2006) and the Renshaw-Haberman model (Renshaw and Haberman, 2006). We 
believe that the flexibility provided by our proposed method is essential, because, based on the experience of Cairns et al. (2009) and Li 
et al. (2015), the optimal choice of a stochastic mortality model is heavily data dependent.

The implementation of the polynomial goal programming method depends on the first four moments of the values of the hedging 
instruments and the liability being hedged. In principle, these moments can be obtained using (nested) simulations, but the computational 
effort entailed may reduce the practicability of our proposed hedging strategies. To mitigate this problem, we derive approximate analytical 
formulas for calculating these moments. Expressed in terms of the parameters in the general state-space representation of stochastic 
mortality models, the approximation formulas are readily applicable in various situations. We apply our theoretical results to a real 
mortality data set, considering a range of hedger preferences. Through this application, the limitations of mean-variance hedging are 
demonstrated.

The remainder of this paper is organized as follows. Section 2 presents the general state-space representation of stochastic mortality 
models, and discusses the distributional assumptions we make. Section 3 presents the set-up of our work and specifies the hedge ob-
jectives. Section 4 details the polynomial goal programming method through which the optimal hedge portfolio is identified. Section 5
derives the approximation formulas for calculating the moments of the values of the hedging instruments and the liability being hedged. 
Section 6 provides a numerical illustration of our theoretical results. Finally, concluding remarks are made in Section 7.

2. Stochastic mortality models

2.1. Preliminaries

Macro longevity risk can be modeled by stochastic mortality models. This sub-section introduces stochastic mortality models by way 
of two examples. When defining the models, it is assumed that they are estimated to historical mortality data over a calibration window 
that spans t = ta to t = tb and an age range that covers x = xa to x = xb .
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2.1.1. The Lee-Carter model
The Lee-Carter model is defined as

ln(m(x, t)) = β
(1)
x + β

(2)
x κ

(2)
t + ε(x, t).

The quantity being modeled here is m(x, t), which represents the central rate of death at age x in year t . It is defined as the ratio of the 
total number of deaths over the age interval of [x, x + 1) during the time interval of [t − 1, t) (i.e., the beginning of year t to the end of 
year t) to the corresponding number of persons at risk. As this quantity is bounded below by zero, a log transform is used.

In the model, parameters β(1)
x , x = xa, . . . , xb , represent the age effect, which refers to the variation of the base (historical average) 

level of mortality across ages. The dynamics of ln(m(x, t)) at all ages are driven by a single time-varying index, κ(2)
t , which, in many 

applications, is assumed to follow a random walk with a constant drift. However, parameters β(2)
x , x = xa, . . . , xb , enable ln(m(x, t)) at 

different ages to respond differently to the time-varying index, and as such, the expected rates of mortality improvement at different ages 
are allowed to be different. Finally, ε(x, t) represents the observation error.

2.1.2. The Cairns-Blake-Dowd model
The Cairns-Blake-Dowd model is defined as

ln

(
q(x, t)

1 − q(x, t)

)
= κ

(1)
t + κ

(2)
t (x − x̄) + ε(x, t).

The quantity being modeled here is q(x, t), the one-year conditional probability of death for age x and year t . It is defined as the probability 
that an individual aged x exact at time t − 1 (i.e., the beginning of year t) dies during the time interval of [t − 1, t). Being a probability, 
this quantity is bounded between zero and one, and for this reason a logit transform is used.1

The model contains two (instead of one) time-varying indexes, κ(1)
t and κ(2)

t . It assumes that in any given year t , q(x, t) after a logit 
transform is a linear function of age x, with κ(1)

t being the intercept and κ(2)
t being the gradient. A reduction in κ(1)

t represents a level 
shift in the curve of ln(q(x, t)/(1 −q(x, t)) against x, or equivalently speaking, an equal improvement in mortality (in logit scale) at all ages. 
On the other hand, a reduction in κ(2)

t represents a flattening of the curve of ln(q(x, t)/(1 − q(x, t)) against x, or equivalently speaking, a 
more substantial improvement in mortality (in logit scale) at higher ages (ages above the average age x̄). In many applications, κ(1)

t and 
κ

(2)
t are assumed to follow a bivariate random walk with a constant drift vector.

2.1.3. Model selection
Models for ln(m(x, t)) and ln(q(x, t)/(1 − q(x, t)) are not nested. However, we may still compare them by considering their deviance 

residuals, as suggested by Cairns et al. (2009) and Li et al. (2015).
As the conclusion of the model selection process is heavily data-dependent, to maximize the applicability of our research, we derive 

our proposed hedging strategies on the basis of a general representation that encompasses most of the discrete-time stochastic mortality 
models in the literature.

2.2. The general state-space representation

As pointed out by Fung et al. (2017, 2018) and Liu and Li (2016, 2021), most discrete-time stochastic mortality models in the literature, 
including those mentioned in the previous sub-section, can be expressed in a state-space form. The general state-space representation of 
stochastic mortality models is composed of an observation equation and a transition equation. The former links the observed values of 
either ln(m(x, t)) or ln(q(x, t)/(1 −q(x, t)) to the time-related and/or year-of-birth-related indexes, whereas the latter captures the random 
evolution of the time-related and/or year-of-birth-related2 indexes.

The observation equation can be expressed as follows:

�y(t) = �d + B�α(t) + �ε(t), (1)

where �y(t) is the vector of observations (the vector of the observed values of ln(m(x, t)) or ln(q(x, t)/(1 − q(x, t)) for x = xa, . . . , xb), �d is a 
constant vector (which is either a vector of zeros or a vector of age-effect parameters), �α(t) is the vector of hidden states (the time-related 
and/or year-of-birth-related indexes), B is the design matrix (which determines how the observations are related to the hidden states) and 
�ε(t) is the vector of observation errors at time t .

The transition equation characterizes the random evolution of the vector of hidden states through a first-order Markov process, given 
by

�α(t) = �c + A�α(t − 1) + �η(t), (2)

where �c is a constant vector (the vector of constant drifts), A is the transition matrix that captures the serial dependence of the hidden 
states, and �η(t) is the vector of random innovations. It is assumed that �η(t) has a zero mean vector, and that �η(t) and �η(s) are uncorrelated 
if t �= s.

1 The logit transform of a quantity y is ln(y/(1 − y)).
2 A year-of-birth related index is one that depends on t − x.
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2.3. Distributional assumptions

In the literature, it is often assumed that the innovation vector �η(t) is normally distributed. However, as discussed in Section 1 (and 
demonstrated in Section 6), such a distributional assumption may be inadequate when the model is used for risk management purposes.

Due to the inadequacy of the normality assumption, in this paper, we assume instead the innovation vector �η(t) follows the multivari-
ate skew-t distribution introduced by Azzalini and Capitanio (2003), a four-parameter distribution that incorporates not only mean and 
variance but also skewness and excess kurtosis.

We use

�Y ∼ Stn(�ξ,�, �ζ , ν)

to denote an n-dimensional random vector �Y which follows the multivariate skew-t distribution introduced by Azzalini and Capitanio 
(2003), with a location parameter of �ξ (an n-by-1 constant vector), a dispersion parameter of � (a full rank symmetric n-by-n constant 
matrix), a skewness parameter of �ζ (an n-by-1 constant vector) and ν (a constant scalar) degrees of freedom. The density function of �Y
can be expressed as follows:

f �Y (�y) = 2tn(�y;ν)T1

(
�ζ ′�−1(�y − �ξ)

(
ν + n

(�y − �ξ)′�−1(�y − �ξ) + ν

)1/2

;ν + n

)
,

where

� = diag(ω1,1, . . . ,ωn,n)
1/2

with ωi,i representing the i-th diagonal element in �, T1(·; ν +n) denotes the distribution function of the univariate (symmetric) Student’s 
t distribution with ν + n degrees of freedom, and

tn(�y;ν) = �{(ν + n)/2}
|�|1/2(πν)n/2�(ν/2)

(
1 + (�y − �ξ)′�−1(�y − �ξ)

ν

)−(ν+n)/2

,

with � representing the gamma function, is the density function of a multivariate t distribution with ν degrees of freedom.
Noting that �η(t) should have a zero mean vector and that E(�η(t)) �= �ξ if �η(t) ∼ Stn(�ξ, �, �ζ , ν), the location parameter �ξ is set to a 

non-zero vector such that the resulting expectation of �η(t) is a zero mean vector. The moments of �η(t) play a crucial role in our proposed 
hedging strategies, which aim to optimize the moments of the hedged position. Azzalini and Capitanio (2003) provided analytical expres-
sions for various moments of random vectors following the multivariate skew-t distribution with �ξ = 0, but their results are insufficient 
for the context of our research because, as previously mentioned, �ξ should be a non-zero vector when the distribution is used to model 
innovation vectors. Therefore, we reformulate the results of Azzalini and Capitanio (2003) to obtain analytical expressions for the moments 
of random variables following Stn(�ξ, �, �ζ , ν) with �ξ �= �0. These analytical expressions and their derivations are presented in Appendix A.

3. Set-up

In this section, we present the set-up for our proposed hedging strategies. Similar to most of the existing longevity hedging strategies, 
we focus on trend risk only, so the randomness arising from the observation error ε(x, t) for any x and t is ignored. To facilitate our 
presentation, we use q̃(x, t) and m̃(x, t) to represent q(x, t) and m(x, t), respectively, when the observation error ε(x, t) is ignored (being 
set to zero).

3.1. The liability being hedged

The liability being hedged is a portfolio of T L -year temporary life annuities that are issued to individuals who are aged xL at time t0. 
At the end of each year during its term, the annuity makes a payment of $1 to the annuitant if the annuitant is alive. We assume that the 
annuity portfolio is sufficiently large, so that micro longevity risk is negligible.

We let L be the sum of the per contract cash flows in time-t0 dollars, with survivorship being taken into account. We have

L =
T L∑

u=1

(
e−ru

u∏
s=1

p̃(xL + s, t0 + s)

)
, (3)

where r is the interest rate at which cash flows are discounted, and

p̃(x, t) := 1 − q̃(x, t) ≈ exp(−m̃(x, t))

represents the probability that an individual survives to age x, given that he/she is alive and aged x − 1 exact at the beginning of year t .3

We use V L(t) to represent the time-t value of the entire (paid and unpaid) annuity liability on a per contract basis, measured in time-t0

dollars. We can express V L(t) as

V L(t) = E(L|Ft), t ≥ t0,

where Ft denotes the information up to and including time t . It is clear from the definition that V L(t) is a known constant in either one 
or both of the following conditions:

3 The approximation that q̃(x, t) ≈ 1 − exp(−m̃(x, t)) is exact when the force of mortality is constant between two consecutive integer ages.
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Fig. 1. An illustration of the cash flows exchanged between the two counterparties of a q-forward at maturity.

1. when it is viewed at any time point at or after time t (i.e., given Fs for s ≥ t);
2. when it is viewed at a time point at or beyond time t0 + T L , as all possible liability cash flows should have been made by time t0 + T L .

Otherwise (i.e., given Fs for s < min(t, t0 + T L)), V L(t) is a random variable.

3.2. The hedging instruments

The hedging instruments used in our proposed hedging strategies are q-forwards. A q-forward is a zero-coupon swap with the floating 
leg being the realized mortality rate at a certain age (the reference age) at the time when the swap matures, and the fixed leg being 
the forward mortality rate which is pre-determined when the swap is launched. The exchange of cash flows between counterparties at 
maturity is illustrated in Fig. 1.

Hedgers wishing to reduce their exposure to longevity risk (the risk that future mortality is lighter than expected) should participate in 
q-forwards as a fixed-rate receiver. With such a position, hedgers will receive net payments from the fixed-rate payer if future mortality 
turns out to be lighter than expected, and the net payments received can offset the correspondingly higher pension/annuity liabilities.

Let us suppose that the hedge portfolio consists of m q-forwards, all of which are launched at the same time point t I , where t I ≥ t0. 
For j = 1, . . . , m, we denote the jth q-forward’s reference age by x j , time-to-maturity by T j , and forward mortality rate by q f (x j, t I + T j).

For consistency reasons, regardless of when the q-forward is launched, we measure its payoff in time-t0 dollars, where t0, as previously 
defined, is the time point when the life annuities are issued. Per $1 notional, the payoff of the j-th q-forward at maturity, measured in 
time-t0 dollars and from the fixed-rate receiver’s perspective, is given by

H( j, tI ) = e−r×(t I −t0+T j)(q f (x j, tI + T j) − q̃(x j, tI + T j)). (4)

We further use

V H (t; j, tI ) = E(H( j, tI )|Ft), t ≥ tI ,

to represent the time-t value of the jth q-forward, measured in time-t0 dollars. Of course, V H (t; j, t I ) is non-random if t ≥ t I + T j , because 
in this case the mortality rate to which the floating leg is linked is already realized. Also, according to its definition, V H (t; j, t I ) is non-
random when it is viewed at any time point at or beyond time t (i.e., given Fs for s ≥ t). Otherwise (i.e., given Fs for s < min(t, t I + T J )), 
V H (t; j, t I ) is a random variable.

Our proposed hedging strategies take costs of hedging into account. In this regard, the risk premium demanded by the counterparty 
(i.e., the fixed-rate payer) should factor into the forward mortality rate. Following Li and Hardy (2011), we use the following formula to 
determine the forward mortality rate for the jth q-forward in the hedge porfolio:

q f (x j, tI + T j) = (1 − T j ×  × v(x j)) × q̂(x j, tI + T j), (5)

where

• q̂(x j, t I + T j) represents the best estimate of q(x j, t I + T j) as of the issue date t I , obtained by setting ε(x, s) and �η(s) for all x and 
s = t I + 1, . . . , t I + T j to zero.

• v(x j) is the estimated volatility of the yearly changes in the death probability at age x j , and
•  > 0 is the market price of risk, which reflects the compensation to the fixed-rate payer for taking on longevity risk exposures from 

the fixed-rate receiver.

3.3. Formulating longevity hedges

In the insurance industry, the biggest concern of an insurer is the randomness associated with the value of its liability in one year, 
because in many jurisdictions, the capital requirement for an insurer is determined by a risk measure that is calculated from the distri-
bution of the insurer’s liability values in one year. For instance, Solvency II requires any insurer operating in the European Union to hold 
solvency capital that is no smaller than the Value-at-Risk (VaR) of the insurer’s liability at the 99.5% confidence level. The Swiss Solvency 
Test, which is implemented in Switzerland, is broadly similar, but is based on the tail-VaR (also known as conditional tail expectation) at 
the 99% confidence level instead.

Accordingly, our goal is to mitigate the randomness associated with the value of the annuity liability in one year. Suppose that we 
formulate a longevity hedge at time t , and that for simplicity all of the m q-forwards used in the hedge are freshly launched at the 
same time. Our goal means that the hedger should acquire N j,t notional amount of the jth q-forward, for j = 1, . . . , m, such that the 
randomness associated with
100
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V P (t + 1; �Nt) = V L(t + 1) −
m∑

j=1

N j,t V H (t + 1; j, t),

where �Nt = (N1,t , . . . , Nm,t)
′ , is mitigated compared to that associated with V L(t + 1).

In studying risk mitigation, we consider the first four moments of V P (t + 1; �Nt), given information up to and including time t . More 
specifically, the notional amounts N1,t , . . . , Nm,t are determined by

• minimizing

M(1)( �Nt) = E[V P (t + 1; �Nt)|Ft],
which represents the mean of the hedged position, so that the (average) cost of hedging is kept low,

• minimizing

M(2)( �Nt) = E[(V P (t + 1; �Nt) − M(1)( �Nt))
2|Ft],

which represents the variance of the hedged position, so that the volatility of the liability values (net of the values of the hedging 
instruments) is kept low,

• minimizing

M(3)( �Nt) = E[(V P (t + 1; �Nt) − M(1)( �Nt))
3|Ft]

(M(2)( �Nt))3/2
,

which reflects the skewness of the hedged position, so that the probability of having extremely large liability values (net of the values 
of the hedging instruments) is kept low, and

• minimizing

M(4)( �Nt) = E[(V P (t + 1; �Nt) − M(1)( �Nt))
4|Ft]

(M(2)( �Nt))2
,

which indicates the kurtosis of the hedged position, so that the tails of the hedged position’s distribution are kept thin.

The formulation of the optimization problem above is detailed in the next section.
While the benefits of reducing mean and variance are obvious, the rationales behind minimizing skewness and kurtosis merit an 

illustration. Everything being equal, hedgers typically aim to reduce the right tail of V P . To illustrate the effect of reducing skewness to 
the right tail of the distribution of V P , in Fig. 2 we compare two skew-normal distributions with the same mean (0) and variance (1), 
but different skewness (−0.45 and −0.93, respectively). The distribution with a larger (less negative) skewness resembles the somewhat 
negatively skewed unhedged position that we are confronting, while the other distribution resembles a hedged position with a reduced 
(more negative) skewness but the same lower moments. The distribution with a smaller skewness clearly has a lower 99.5th percentile, 
highlighting the benefit of reducing skewness when considering the far tail. However, the diagram also suggests that reducing skewness 
is not necessarily beneficial if we are not looking far enough into the right tail. In particular, the 80th percentile of the distribution with 
a smaller skewness is higher compared to the other distribution.

To demonstrate the benefit of reducing kurtosis, in Fig. 3 we compare two skew-t distributions with the same mean (0), variance (1) 
and skewness (−0.9), but different kurtosis. The distribution with a smaller kurtosis (which resembles a hedged position with a reduced 
kurtosis) comes with a lower 99.5th percentile compared to the other distribution (which resembles the unhedged position), suggesting 
that a longevity hedge that minimizes kurtosis has a strong potential to reduce Value-at-Risk at a high confidence level.

Finally, we remark that in the expressions for M(3)( �Nt) and M(4)( �Nt), the denominators ((M(2)( �Nt))
3/2 and M(2)( �Nt))

2, respectively) 
are used for standardization purposes. In addition to standardized moments, centered moments are also considered in our investigation. 
It is found that the results produced on the basis of standardized moments and centered moments are similar.

4. Polynomial goal programming

In this section, we present a formal formulation of the optimization problem set out in Section 3.3. Let us begin by stating the 
constraints we use in the optimization problem:

• N j,t ≥ 0 for all j = 1, . . . , m
This constraint means that the hedger cannot participate in a q-forward as a fixed-rate payer. We impose this constraint because, as 
discussed in Section 3.2, one should participate in a q-forward as a fixed-rate receiver if he/she wishes to hedge his/her exposure to 
longevity risk.

• ∑m
j=1 N j,t E[V H (t + 1; j, t)|Ft] ≤ C × E[V L(t + 1)|Ft]

Recall that we assume that the q-forwards used in the hedge come with a cost, with a market price of risk  > 0. We further assume 
that the hedger has a budget of C (as a fraction of the value of the annuity liability) for hedging. This constraint makes our set-up a 
closer resemblance to real-life situations, as in practice hedgers do have a budget for hedging (see, e.g., Callan Institute, 2017).

Accordingly, the optimization problem in question can be formulated as follows:⎧⎨
⎩

Minimize M(i)( �Nt), i = 1,2,3,4
Subject to N j,t ≥ 0, j = 1 . . . ,m∑m N E[V H (t + 1; j, t)|Ft] ≤ C × E[V L(t + 1)|Ft]
j=1 j,t
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Fig. 2. Illustrating the effect of reducing skewness on the tail of the distribution of V P : skew-normal distributions with the same mean (0) and variance (1), but different 
skewness (−0.45 and −0.93, respectively).

To solve the optimization problem, we adapt the polynomial goal programming approach considered by Lai et al. (2006). This approach 
makes the optimization problem solvable by consolidating the four objectives into one single objective function.

In the polynomial goal programming approach, we first determine the aspired levels of the four moments. Concerning the optimization 
problem we are confronting, the aspired level of a moment is the lowest achievable level of the moment when the objectives concerning 
the other moments are not taken into consideration. The aspired levels of the four moments can be determined by solving the following 
sub-problem independently for each i = 1, 2, 3, 4:⎧⎨

⎩
Minimize M(i)( �Nt)

Subject to N j,t ≥ 0, j = 1 . . . ,m∑m
j=1 N j,tE[V H (t + 1; j, t)|Ft] ≤ C × E[V L(t + 1)|Ft]

We use M(i) to represent the aspired level of M(i)( �Nt) (i.e., the solution to the sub-problem above).
Next, we consider the deviation between M(i)( �Nt) and M(i) for each i = 1, 2, 3, 4, measured with the following metric:∣∣∣∣∣ M(i)( �Nt) −M(i)

M(i)

∣∣∣∣∣ .
We further allow the hedger to have asymmetric preferences concerning the four moments. A constant λi is used to represent the hedger’s 
emphasis on the ith moment, where i = 1, 2, 3, 4. The higher the value of λi is, the more the hedger concerns about the ith moment. The 
values of λi for i = 1, 2, 3, 4 should be specified before executing the optimization.

On the basis of the deviation metric, the aspired levels, and the pre-specified values of λi for i = 1, 2, 3, 4, the original optimization 
problem can be reformulated as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Minimize λ1

∣∣∣ g1
M(1)

∣∣∣ + λ2

∣∣∣ g2
M(2)

∣∣∣ + λ3

∣∣∣ g3
M(3)

∣∣∣ + λ4

∣∣∣ g4
M(4)

∣∣∣
Subject to M(i)( �Nt) − gi = M(1), i = 1,2,3,4

N j,t ≥ 0, j = 1 . . . ,m∑m
j=1 N j,tE[V H (t + 1; j, t)|Ft] ≤ C × E[V L(t + 1)|Ft]

g ≥ 0, i = 1,2,3,4
i
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Fig. 3. Illustrating the effect of reducing skewness on the tail of the distribution of V P : skew-t distributions with the same mean (0), variance (1) and skewness (−0.9), but 
different kurtosis (4.5 and 11, respectively).

In the above, gi is the goal variable measuring how less favorable M(i)( �Nt) is compared to its aspired level M(i) , and as such, the last 
constraint gi ≥ 0 is imposed. On solving this optimization problem, we obtain the optimized notional amounts, N̂ j,t for j = 1, . . . , m, of 
the q-forwards in the hedge portfolio.

5. Implementation

5.1. The required inputs

In this section, we discuss how the polynomial goal programming approach can be implemented in the context of this research. We 
begin by identifying the inputs required for the implementation.

Let us consider

(V L(t + 1), V H (t + 1;1, t), . . . , V H (t + 1;m, t))′,
the vector of the time-(t + 1) values of the annuity liability and the m q-forwards (which are freshly issued at time t). We use

Mt = {μi,t; i = 1, . . . ,m + 1},
Vt = {σi j,t; i, j = 1, . . . ,m + 1},
St = {si ju,t; i, j, u = 1, . . . ,m + 1}

and

Kt = {kijuv,t; i, j, u, v = 1, . . . ,m + 1}
to represent the first four moments of this vector, given information up to and including time t , respectively.4 It can be shown that the 
first four moments of the hedged position V P (t + 1; �Nt) can be rewritten in terms of μi,t , σi j,t , si ju,t and kijuv,t as follows:

4 The third and fourth moments represented by these notations are pre-standardized.
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M(1)( �Nt) = E[V P (t + 1; �Nt)|Ft] =
m+1∑
i=1

wi,tμi,t,

M(2)( �Nt) = E[(V P (t + 1; �Nt) − M(1)( �Nt))
2|Ft] =

m+1∑
i=1

m+1∑
j=1

wi,t w j,tσi j,t,

M(3)( �Nt) = E[(V P (t + 1; �Nt) − M(1)( �Nt))
3|Ft]

(M(2)( �Nt))3/2
=

m+1∑
i=1

m+1∑
j=1

m+1∑
u=1

wi,t w j,t wu,t si ju,t

(
m+1∑
i=1

m+1∑
j=1

wi,t w j,tσi j,t

)3/2

and

M(4)( �Nt) = E[(V P (t + 1; �Nt) − M(1)( �Nt))
4|Ft]

(M(2)( �Nt))2
=

m+1∑
i=1

m+1∑
j=1

m+1∑
u=1

m+1∑
v=1

wi,t w j,t wu,t w v,tki juv,t

(
m+1∑
i=1

m+1∑
j=1

wi,t w j,tσi j,t

)2
,

where w1,t = 1, and wi,t = −Ni−1,t for i = 2, . . . , m + 1.
It is now clear that the optimization problem depends critically on Mt , Vt , St and Kt . In principle, we can obtain these four arrays 

of values using simulations, but the computation effort entailed may reduce the practicality of the proposed hedging strategies. To get a 
better idea about the computational effort needed, let us suppose that we wish to evaluate the performance of a hedge that is established 
at time t . Without analytical solutions, we first need to simulate a large number of sample paths of future mortality rates (or, equivalently 
speaking, sample paths of innovation vectors) from time t . Then, for each of the simulated sample paths, we need another set of simulated 
sample paths to calculate Mt+1, Vt+1, St+1 and Kt+1, thereby creating the situation of ‘simulations on simulations’.

To reduce the computational effort needed, we propose to calculate Mt , Vt , St and Kt using approximate analytical formulas. In the 
next two sub-sections, we discuss how such approximate analytical formulas may be obtained.

5.2. Approximating L and H( j, t)

The approximate analytical formulas for calculating Mt , Vt , St and Kt are based on first-order Taylor’s expansions of L and H( j, t).
Let us first focus on L, the sum of the annuity liability’s cash flows measured in time-t0 dollars, taken into account of survivorship. 

When calculating Mt , Vt , St and Kt (i.e., calibrating the hedge at time t), we consider a first-order Taylor’s expansion of L around �η(t +
1), . . . , �η(t0 +T L) (the innovation vectors between time t +1 and the time when the annuity liability runs off completely). More specifically, 
when calculating Mt , Vt , St and Kt for t0 ≤ t < t0 + T L , the approximation of L takes the following form:

L ≈ l := L̂ +
t0+T L∑
s=t+1

(
∂L

∂ �η(s)

)′ (
�η(s) − �̂η(s)

)
, (6)

where �̂η(s) = E(�η(s)|Ft) = �0 for all s = t + 1, . . . , t0 + T L , L̂ is the value of L calculated by using the realized values of �η(t0), . . . , �η(t) and 
setting �η(s) = �̂η(s) = �0 for s = t + 1, . . . t0 + T L , and ∂L/∂ �η(s) is the partial derivative of L with respect to �η(s), evaluated at the realized 
values of �η(t0), . . . , �η(t) and �η(u) = �̂η(u) = �0 for u = t + 1, . . . , t0 + T L .

Using equation (6), we obtain the following approximation of the time-(t + 1) value of the annuity liability (when viewed at time t
when Mt , Vt , St and Kt are calculated):

VL(t + 1) = E(L|Ft+1) ≈ Vl(t + 1) := E(l|Ft+1) = L̂ +
(

∂L

∂ �η(t + 1)

)′
�η(t + 1). (7)

This equation involves only �η(t + 1) for the following two reasons. First, given information up to and including time t + 1, the expectation 
of �η(s) for any s > t + 1 is a zero vector. Second, given information up to and including time t + 1, �η(t + 1) is a known vector.

An analytical expression (written in terms of the parameters in the general state-space representation of stochastic mortality models) 
for computing ∂L/∂ �η(t + 1) is derived in Appendix B.

We then consider H( j, t), the payoff (measured in time-t0 dollars) of the jth q-forward in the hedge portfolio that is formed at t ≥ t0.5

When calculating Mt , Vt , St and Kt (i.e., calibrating the hedge at time t), we consider a first-order Taylor’s expansion of H( j, t) around 
�η(t + 1), . . . , �η(t + T j) (the innovation vectors between time t + 1 and the time when the jth q-forward matures). In more detail, when 
calculating Mt , Vt , St and Kt for t0 ≤ t < t0 + T L , the approximation of H( j, t) takes the following form:

H( j, t) ≈ h( j, t) := Ĥ( j, t) +
t+T j∑

s=t+1

(
∂ H( j, t)

∂ �η(s)

)′ (
�η(s) − �̂η(s)

)
, (8)

5 In our set-up, it is assumed that all q-forwards in the hedge portfolio formed at time t ≥ t0 are freshly launched at time t (i.e., tI = t).
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for j = 1, . . . , m, where �̂η(s) = E(�η(s)|Ft) = �0 for all s = t +1, . . . , t + T j , Ĥ( j, t) is the value of H( j, t) calculated by setting �η(s) = �̂η(s) = �0
for all s = t + 1, . . . , t + T j , and ∂ H( j, t)/∂ �η(s) is the partial derivative of H( j, t) with respect to �η(s), evaluated at �η(u) = �̂η(u) = �0 for all 
u = t + 1, . . . , t + T j .

Using equation (8), we get the following approximation of the time-(t + 1) value of the jth q-forward in the hedge portfolio formed at 
time t:

V H (t + 1; j, t) = E[H( j, t)|Ft+1] ≈ Vh(t + 1; j, t) := E[h( j, t)|Ft+1] = Ĥ( j, t) +
(

∂ H( j, t)

∂ �η(t + 1)

)′
�η(t + 1).

This equation involves only �η(t + 1), because, given information up to and including time t + 1, the expectation of �η(s) for any s > t + 1
is a zero vector and �η(t + 1) is a known vector. An analytical expression (written in terms of the parameters in the general state space 
representation of stochastic mortality models) for computing ∂ H( j, t)/∂ �η(t + 1) is derived in Appendix B.

Cairns (2011) and Zhou and Li (2017) considered similar first-order approximations to approximate values of annuity liabilities and 
q-forwards, and confirmed the accuracy of the approximations for thousands of different realizations of �η(t + 1). A further examination of 
the accuracy of the approximation is provided in Section 6 where numerical illustrations are presented.

5.3. Approximate analytical expressions for Mt , Vt , St and Kt

Given Vl(t +1) as an approximate for V L(t +1) and Vh(t +1; j, t) as an approximate for V H (t +1; j, t), for j = 1, . . . , m, we approximate 
Mt , Vt , St and Kt using the first four moments of the random vector

(Vl(t + 1), Vh(t + 1;1, t), . . . , Vh(t + 1;m, t))′, (9)

given information up to and including time t , respectively. As shown below, the approximation of Mt , Vt , St and Kt can be calculated 
analytically.

First, assuming that the stochastic mortality model used contains n innovations at a given time point, we can rewrite Vl(t + 1) and 
Vh(t + 1; j, t) for j = 1, . . . , m in scalar forms as follows:

Vl(t + 1) = L̂ +
n∑

k=1

(Dk(0, t + 1) × ηk(t + 1)) (10)

and

Vh(t + 1; j, t) = Ĥ( j, t) +
n∑

k=1

(Dk( j, t + 1) × ηk(t + 1)) , j = 1, . . . ,m, (11)

where

Dk(0, t + 1) = ∂L

∂ηk(t + 1)

and

Dk( j, t + 1) = ∂ H( j, t)

∂ηk(t + 1)
, j = 1, . . . ,m.

Following the discussion in Section 2.3, given Ft , the innovation vector at time t + 1, that is, �η(t + 1) = (η1(t + 1), . . . , ηn(t + 1))′ , is 
assumed to follow Stn(�ξ, �, �ζ , ν). Using the distributional assumption on �η(t + 1) and equations (10) and (11), the first four moments of 
the random vector in expression (9) and hence the approximates of Mt , Vt , St and Kt can be obtained as follows:

• Approximation of Mt

By taking expectation on equations (10) and (11) given Ft , it can be shown that the expectation of the vector in expression (9) given 
Ft is (L̂, Ĥ(1, t), . . . , Ĥ(m, t))′ . Therefore, we approximate Mt as (L̂, Ĥ(1, t), . . . , Ĥ(m, t))′ , in which all elements, as explained in the 
previous sub-section, can be computed analytically.

• Approximation of Vt

We can approximate σi j,t (i.e., the (i, j)th element in Vt ) as follows:

σi j,t ≈ Cov

(
n∑

k1=1

(
Dk1(i − 1, t + 1) × ηk1(t + 1)

)
,

n∑
k2=1

(
Dk2( j − 1, t + 1) × ηk2(t + 1)

)∣∣∣∣∣Ft

)

=
n∑

k1=1

n∑
k2=1

(
Dk1(i − 1, t + 1) × Dk2(i − 1, t + 1) × Cov(ηk1(t + 1),ηk2(t + 1)|Ft)

)
,

for i, j = 1, 2, . . . , m + 1, where Cov(ηk1 (t + 1), ηk2 (t + 1)|Ft) can be obtained analytically from equation (22) in Appendix A.
• Approximation of St
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We can approximate si ju,t (i.e., the (i, j, u)th element in St ) as follows:

si ju,t ≈ E

[(
n∑

k1=1

(
Dk1(i − 1, t + 1) × ηk1(t + 1)

)) ×
(

n∑
k2=1

(
Dk2( j − 1, t + 1) × ηk2(t + 1)

))

×
(

n∑
k3=1

(
Dk3(u − 1, t + 1) × ηk3(t + 1)

))∣∣∣∣∣Ft

]

=
n∑

k1=1

n∑
k2=1

n∑
k3=1

(
Dk1(i − 1, t + 1) × Dk2( j − 1, t + 1) × Dk3(u − 1, t + 1)

×E(ηk1(t + 1)ηk2(t + 1)ηk3(t + 1)|Ft)
)
,

for i, j, u = 1, 2, . . . , m + 1, where E(ηk1(t + 1)ηk2 (t + 1)ηk3 (t + 1)|Ft) can be calculated analytically by using equation (23) in Ap-
pendix A.

• Approximation of Kt

We can approximate kijuv,t (i.e., the (i, j, u, v)th element in Kt ) as follows:

kijuv,t ≈E

[(
n∑

k1=1

(
Dk1(i − 1, t + 1) × ηk1(t + 1)

)) ×
(

n∑
k2=1

(
Dk2( j − 1, t + 1) × ηk2(t + 1)

))

×
(

n∑
k3=1

(
Dk3(u − 1, t + 1) × ηk3(t + 1)

)) ×
(

n∑
k4=1

(
Dk4(v − 1, t + 1) × ηk4(t + 1)

))∣∣∣∣∣Ft

]

=
n∑

k1=1

n∑
k2=1

n∑
k3=1

n∑
k4=1

(
Dk1(i − 1, t + 1) × Dk2( j − 1, t + 1) × Dk3(u − 1, t + 1)

×Dk4(v − 1, t + 1) × E(ηk1(t + 1)ηk2(t + 1)ηk3(t + 1)ηk4(t + 1)|Ft)
)
,

for i, j, u, v = 1, 2, . . . , m + 1, where E(ηk1(t + 1)ηk2 (t + 1)ηk3 (t + 1)ηk4 (t + 1)|Ft) can be computed analytically with equation (24) in 
Appendix A.

With the approximates of Mt , Vt , St and Kt , the constrained optimization problem formulated in Section 4 can be implemented without 
simulations.

6. Numerical illustrations

In this section, we demonstrate our theoretical results with a stochastic mortality model that is estimated to real historical data.

6.1. Model and data

We consider the data from the male population of England and Wales over the age range of xa = 60 to xb = 89 and the calibration 
window of ta = 1950 to tb = 2016. The data set (which encompasses death and exposure counts) are obtained from the Human Mortality 
Database (www.mortality.org).

In what follows, we describe the processes in which we (a) identify a stochastic mortality model for the data set, (b) choose a time-
series process for the dynamics of the time-varying indexes, and (c) specify the distribution for the innovation vectors in the chosen 
time-series process.

6.1.1. Stochastic mortality models
The candidate models we consider are the Lee-Carter model and the Cairns-Blake-Dowd model, which are probably the most frequently 

considered stochastic mortality models in the literature. These two models are not nested, so we compare them by considering the 
deviance residuals produced by them when they are fitted to the data set under consideration using the method of Poisson maximum 
likelihood (Wilmoth, 1993).

The resulting deviance residuals6 are displayed in Fig. 4. For both models, the deviance residuals are reasonably random and do not 
exhibit any substantial systematic patterns. While the deviance residuals suggest that both models are viable, we choose to use the Cairns-
Blake-Dowd model on grounds that it is more interpretable and that it possesses properties that facilitate the construction of index-based 
longevity risk transfers (see Chan et al., 2014).

6.1.2. Time-series processes for the dynamics of κ(1)
t and κ(2)

t

Fig. 5 displays the estimates of the time-varying indexes κ(1)
t and κ(2)

t in the Cairns-Blake-Dowd model within the calibration window. 
When modeling the dynamics of the indexes, we restrict ourselves to the class of vector autoregressive (VAR) processes, as the data series 
seems too short for non-linear multivariate time-series processes such as multivariate GARCH.

On the basis of sample autocorrelation matrices (SCCM; see Table 17), it is found that {(κ(1)
t , κ(2)

t )′} is not stationarity, but the first 
difference of it, i.e., {(�κ

(1)
t , �κ

(2)
t )′} appears to be stationary. We then model {(�κ

(1)
t , �κ

(2)
t )′} with the simplest VAR process, i.e., VAR(0). 

6 We refer the reader to Li (2013) for the definition of deviance residuals in the context of stochastic mortality modeling.
7 Simplified SCCMs are presented (Tsay, 2010). In each simplified SCCM, ‘+’ indicates a value greater than twice the estimated standard error, ‘−’ denotes a value less than 

minus twice the estimated standard error and ‘·’ represents an insignificant value.
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Fig. 4. Deviance residuals produced by the Lee-Carter model and the Cairns-Blake-Dowd model when fitted to the data set under consideration.

Fig. 5. Estimates of the time-varying indexes κ
(1)
t and κ

(2)
t , for t = 1950, . . . ,2016, in the Cairns-Blake Dowd model.

This in turn means that a bivariate random walk with drift is used to model {(κ(1)
t , κ(2)

t )′}. The estimate of the drift vector (c(1), c(2))′ is 
(−0.0153, 2.3866 × 10−4)′ .

We are aware that the series of the first difference of the time-varying indexes exhibits some lag-1 autocorrelation. We choose not 
to include an autoregressive term, in part because the lag-1 autocorrelation is only marginally significant, and in part because in the 
literature the time-varying indexes in stochastic mortality models are typically modeled by a random walk with drift. We remark that 
the random walk with drift assumption is used in the original versions of the Lee-Carter and Cairns-Blake-Dowd models (Lee and Carter, 
1992; Cairns et al., 2006), and is being regarded as ‘the universal pattern of mortality decline’ by a group of renowned demographers 
(Tuljapurkar et al., 2000).

6.1.3. Distributions for the innovation vectors
We first examine if the normality assumption for the innovation vectors is adequate. When the Jarque-Bera test is applied to each of 

the two series of estimated innovations over t = 1950, . . . , 2016, the resulting p-values are 0.0127 and 0.0020, respectively. These p-values 
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Table 1
Simplified SCCMs for {(κ(1)

t , κ(2)
t )′} and {(�κ

(1)
t , �κ

(2)
t )′}.

Lag 1 2 3 4 5

SCCM for {(κ(1)
t , κ

(2)
t )′}

(+ −
− +

) (+ −
− +

) (+ −
− +

) (+ −
− +

) (+ −
− +

)

Lag 1 2 3 4 5

SCCM for {(�κ
(1)
t ,�κ

(2)
t )′}

(− −
− −

) ( · ·
· ·

) ( · ·
· ·

) ( · ·
· ·

) ( · ·
· ·

)

Fig. 6. Contour plots of the estimated bivariate normal and skew-t distributions.

Fig. 7. p-p plots of the Mahalanobis distances generated from the estimated bivariate normal and skew-t distributions.

indicate that the marginal distributions of both η1(t) and η2(t) are not normal at the 5% level of significance. We also apply Henze-Zirkler’s 
multivariate normality test to the series of the innovation vector (η1(t), η2(t))′ over t = 1950, . . . , 2016. The resulting p-value is 0.0208, 
suggesting a rejection of the null hypothesis that the innovation vector is bivariate-normally distributed at the 5% level of significance. In 
light of the results of the normality tests, we opt to model the innovation vectors with the bivariate skew-t distribution.

The fitness of the estimated bivariate skew-t distribution is then analyzed by graphical means. The following observations are made:

• As shown in Fig. 6, the contour plot of the density function of the bivariate skew-t distribution is substantially more in line with the 
observed values, compared to that of the bivariate normal distribution.

• As shown in Fig. 7, the p-p plot of the Mahalanobis distances (Healy, 1968; Azzalini and Capitanio, 2003) generated from the estimated 
bivariate skew-t distribution is close to the 45 degree line, and suggests a substantial improvement in goodness-of-fit compared to 
the bivariate normal distribution.

Finally, a bivariate Kolmogorov-Smirnov goodness-of-fit test (Justel et al., 1997) is used to test the null hypothesis that the bivariate 
skewed-t distribution provides an adequate fit. From the data, it is found that the value of the test statistic is 0.08464. Using Monte-Carlo 
simulations, we generate the distribution of the test statistic under the null hypothesis (for a sample size of 66), and obtain the critical 
values reported in Table 2. It is clear that the null hypothesis cannot be rejected at any reasonable level of significance. For the reader’s 
information, the estimates of the parameters in the bivariate skew-t distribution are provided in Table 3.
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Table 2
Critical values of the bivariate Kolmogorov-Smirnov goodness-of-fit 
test when the sample size is 66.

Level of significance 0.1 0.05 0.01 0.001

Critical value 0.1563 0.1721 0.2040 0.2453

Table 3
Estimates of parameters in the skew-t distribution assumed for the innovation vector.

Parameter �ξ � �ζ ν

Estimate

( −0.0061
0.0011

) (
7.2847 × 10−4 0.1306 × 10−4

0.1306 × 10−4 0.0234 × 10−4

) (
1.1803

−2.1223

)
5.3491

Table 4
Specifications of the four q-
forwards used in the hedge 
portfolios.

j x j T j vx j

1 60 10 2.25%
2 65 10 2.92%
3 70 10 3.66%
4 75 10 4.28%

6.2. General assumptions

We assume that the liability being hedged is a portfolio of life annuities with a term of T L = 25 years. The annuities are issued to 
individuals from the male population of England and Wales, all aged xL = 60 when the annuities are sold at the end of year t0 = 2016. 
We consider a static hedge, which is established at the end of year t0 = 2016.

Each annuity makes a payment of $1 to the annuitant at the end of each year until the annuitant dies or the end of the term is 
reached, whichever is the earliest. As previously mentioned, we assume that the annuity portfolio is large enough so that micro longevity 
risk is negligible.

The hedging instruments used are m = 4 q-forwards, all of which are freshly launched at time t0 = 2016 and linked to the mortality 
of English and Welsh males. Table 4 shows the reference age x j and time-to-maturity T j of each of the four q-forwards; it also gives, for 
each j = 1, 2, 3, 4, the value of v(x j), the estimated volatility of the yearly changes in the smoothed death probability at age x j .8 Given 
v(x j) and the assumption that the market price of risk  is 0.25, we can calculate the forward mortality rate (i.e., the fixed leg) of the jth 
q-forward using equation (5).9

We set C to 0.5% in the implementation of the polynomial goal programming method. This assumption is equivalent to saying that 
the hedger has a budget of 0.5% of the value of the liability (i.e., a budget of 0.005 × E[V L(t + 1)|Ft]) for the hedge formulated at time t . 
Finally, an interest rate of r = 0.01 is used to discount all cash flows.

6.3. Implementing the approximation

To implement the constrained optimization of the hedge portfolio, we approximate Mt , Vt , St and Kt using the analytical method 
presented in Section 5.3. We now demonstrate the calculations involved.

First, given the estimates of the parameters in the bivariate skew-t distribution for the innovation vectors (Table 3), we calculate the 
moments of the innovation vector �η(t + 1) = (η1(t + 1), η2(t + 1))′ , given information up to and including time t , using the expressions 
derived in Appendix A. The calculated second, third, and fourth moments of �η(t + 1) given Ft are reported in Table 5. Note that the 
parameter estimates in Table 3 imply that the first moment of �η(t + 1) given Ft is E(�η(t + 1)|Ft) = �0.

Next, we express the Cairns-Blake-Dowd model in a state-space form. For the observation equation, we have

�y(t) =

⎛
⎜⎜⎜⎜⎝

ln q(xa,t)
1−q(xa,t)

ln q(xa+1,t)
1−q(xa+1,t)

...

ln q(xb,t)
1−q(xb,t)

⎞
⎟⎟⎟⎟⎠ , �d =

⎛
⎜⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

1 (xa − x̄)
1 (xa + 1 − x̄)
...

...

1 (xb − x̄)

⎞
⎟⎟⎟⎠ ,

8 The values of v(x j) are calculated from smoothed death probabilities because the pricing of q-forwards (which takes as v(x j) an input) should not include small sample 
risk that can be diversified away.

9 In reality, the market price of risk  might be time-varying as market participants’ views on longevity risk might change over time. We assume in our numerical 
illustrations that the market price of risk does not vary with time, in part for simplicity and in part for the fact that the lack of transactions in the currently infantile 
longevity risk market prohibits us from setting up a time-varying model for .
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Table 5
The calculated second, third, and fourth moments of �η(t + 1) = (η1(t + 1), η2(t + 1))′ , given 
information up to and including time t .

η1(t + 1) η2(t + 1)

η1(t + 1) 1.1323 × 10−3 2.6931 × 10−5

η2(t + 1) 2.6931 × 10−5 2.5557 × 10−6

Second moment

η1(t + 1) η2(t + 1)

η1(t + 1) η2(t + 1) η1(t + 1) η2(t + 1)

η1(t + 1) 8.1938 × 10−6 −4.1933 × 10−7 −4.1933 × 10−7 −1.4355 × 10−8

η2(t + 1) −4.1933 × 10−7 −1.4355 × 10−8 −1.4355 × 10−8 −4.4271 × 10−9

Third moment

η1(t + 1)

η1(t + 1) η2(t + 1)

η1(t + 1) η2(t + 1) η1(t + 1) η2(t + 1)

η1(t + 1) 9.6862 × 10−6 2.1497 × 10−7 2.1497 × 10−7 1.1405 × 10−8

η2(t + 1) 2.1497 × 10−7 1.1405 × 10−8 1.1405 × 10−8 5.1680 × 10−10

η2(t + 1)

η1(t + 1) η2(t + 1)

η1(t + 1) η2(t + 1) η1(t + 1) η2(t + 1)

η1(t + 1) 2.1497 × 10−7 1.1405 × 10−8 1.1405 × 10−8 5.1680 × 10−10

η2(t + 1) 1.1405 × 10−8 5.1680 × 10−10 5.1680 × 10−10 6.5290 × 10−11

Fourth moment

Table 6
Values of partial derivatives Dk( j, t0 + 1), for k = 1, 2 and j = 0, 1, . . . , 4.

Dk(0, t0 + 1) Dk(1, t0 + 1) Dk(2, t0 + 1) Dk(3, t0 + 1) Dk(4, t0 + 1)

k = 1 −3.0993 −0.0049 −0.0086 −0.0148 −0.0253
k = 2 11.3312 0.0716 0.0814 0.0666 −0.0126

�α(t) =
(

κ
(1)
t

κ
(2)
t

)
and �ε(t) =

⎛
⎜⎜⎜⎝

ε(xa, t)
ε(xa + 1, t)

...

ε(xb, t)

⎞
⎟⎟⎟⎠ .

For the transition equation, we have

�α(t) =
(

κ
(1)
t

κ
(2)
t

)
, �c =

(
c(1)

c(2)

)
, A =

(
1 0
0 1

)
, and �η(t) =

(
η1(t)
η2(t)

)
.

Using the state-space parameterization and the formulas provided in Appendix B, we calculate all of the required partial derivatives, 
namely, Dk( j, t + 1) for j = 0, 1, . . . , 4 and k = 1, 2. Table 6 shows the calculated values of Dk( j, t0 + 1), for j = 0, 1, . . . , 4 and k = 1, 2, 
for the reader’s reference.

Finally, with the calculated moments of �η(t + 1) given Ft and the partial derivatives, we use the analytical expressions provided in 
Section 5.3 to compute approximated values of Mt , Vt , St and Kt , which are subsequently fed into the constrained optimization problem 
formulated in Section 4 to obtain the optimized hedge portfolio.

6.4. Evaluating the approximation

As discussed in Section 5.3, the approximation formulas for Mt , Vt , St and Kt are derived using Vl(t +1) as an approximate for V L(t +1)

and Vh(t + 1; j, t) as an approximate for V H (t + 1; j, t), for j = 1, . . . , 4. We now evaluate the accuracy of these approximations.
To evaluate the accuracy of these approximations, we generate 20,000 realizations of Ft0+1 given Ft0 . For each of these realizations, 

we calculate a realization of Vl(t0 + 1) = E(l|Ft0+1), and a realization of Vh(t0 + 1; j, t0) = E(h( j, t0)|Ft0+1) for each j = 1, . . . , 4. Then, 
for each of the 20,000 realizations of Ft0+1, we compute the arctangent absolute percentage errors in approximating V L(t0 + 1) and 
V H (t0 + 1; j, t0), j = 1, . . . , 4, as

arctan

∣∣∣∣ Vl(t0 + 1) − V L(t0 + 1)

V L(t0 + 1)

∣∣∣∣ and arctan

∣∣∣∣ Vh(t0 + 1, j, t0) − V H (t0 + 1, j, t0)

V H (t0 + 1, j, t0)

∣∣∣∣ ,
respectively. In calculating the arctangent absolute percentage errors, the values of V H (t0 + 1, j, t0) and V L(t0 + 1) are obtained using full 
(nested) simulations. Finally, the arctangent absolute percentage errors are then averaged over the 20,000 realizations to obtain the mean 
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Table 7
The mean arctangent absolute percentage errors (MAAPE) in approximating V L(t0 + 1) and V H (t0 + 1; j, t0), 
for j = 1, . . . , 4.

V L(t0 + 1) V H (t0 + 1;1, t0) V H (t0 + 1;2, t0) V H (t0 + 1;3, t0) V H (t0 + 1;4, t0)

MAAPE 0.0060% 2.3817% 1.0808% 0.7651% 1.1427%

Fig. 8. Empirical distributions of V L(t0 + 1) (obtained using full nested simulations) and Vl(t0 + 1) (obtained using the proposed approximation). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 9. Percentage errors in the approximation of V L(t0 + 1) for different values of η1(t0 + 1) and η2(t0 + 1).

arctangent absolute percentage errors (MAAPE) in approximating V L(t0 + 1) and V H (t0 + 1; j, t0) for j = 1, . . . , 4.10 As shown in Table 7, 
the MAAPEs are reasonably low.

In addition to reporting the MAAPEs, we consider two aspects that may help us more holistically assess the approximation accuracy. 
First, we compare the empirical distributions of V L(t0 + 1) and V H (t0 + 1; j, t0) for j = 1, . . . , 4 (obtained using full nested simulations) 
and the empirical distributions of Vl(t0 + 1) and Vh(t0 + 1; j, t0) for j = 1, . . . , 4 (obtained using the proposed approximation). Fig. 8
shows the empirical distributions of V L(t0 + 1) and Vl(t0 + 1) side by side. The close proximity between the two empirical distributions 
substantiates the accuracy of the approximation. The comparisons between Vh(t0 +1; j, t0) and V H (t0 +1; j, t0) for j = 1, . . . , 4 are similar.

Second, we simulate 20,000 pairs of η1(t0 + 1) and η2(t0 + 1) (the innovations at time t0 + 1), and evaluate the accuracy of the 
approximations of V L(t0 + 1) and V H (t0 + 1; j, t0), j = 1, . . . , 4, for each of the 20,000 pairs of simulated η1(t0 + 1) and η2(t0 + 1). As an 
example, let us consider the result for V L(t0 + 1) (Fig. 9). The dots in the diagrams represent the 20,000 simulated pairs of η1(t0 + 1) and 

10 Although mean absolute percentage error (MAPE) is a more commonly used metric, we measure approximation errors with MAAPE, because the latter is not reliable 
when the denominator (true value) is small (see Kim and Kim, 2016).
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Table 8
Hedging results for static hedges implemented with nine different sets of risk preferences.

Risk Preference Aspired

Unhedged (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) Level

λ1 − 1 1 1 1 1 1 1 1 1 −
λ2 − 1 1 1 1 1 1 1 1 1 −
λ3 − 0 0.1 0.5 1 5 0 0 0 0 −
λ4 − 0 0 0 0 0 0.1 0.5 1 5 −
N1 − 3.3700 2.6720 0.5145 0.0500 0.0208 3.2191 3.1593 2.9307 2.8435 −
N2 − 0.0006 0.0000 0.0000 0.0008 0.0229 0.0031 0.0042 0.0026 0.0000 −
N3 − 0.0013 0.0000 0.0000 0.0000 0.0018 0.0073 0.0097 0.0060 0.0033 −
N4 − 0.0328 0.1003 0.3060 0.3500 0.3462 0.0431 0.0473 0.0715 0.0821 −
Mean 18.2798 18.3723 18.3723 18.3723 18.3723 18.3723 18.3723 18.3723 18.3723 18.3723 18.2798
Variance (×10−3) 9.4427 3.4130 3.4290 4.1793 4.4774 4.4870 3.4139 3.4143 3.4162 3.4171 3.4106
Skewness −0.4464 0.0745 −0.0444 −0.4195 −0.4996 −0.4998 0.0499 0.0403 0.0007 −0.0149 −0.5082
Kurtosis 6.2071 5.9309 5.8741 6.1476 6.2946 6.2949 5.9143 5.9084 5.8886 5.8826 5.8580

η2(t0 + 1) given Ft0 . The cloud of dots may therefore be seen as the possible range of (η1(t0 + 1), η2(t0 + 1))′ . The contour lines represent 
the percentage errors in approximating V L(t0 + 1). At the centroid of the cloud of dots, the percentage error is zero as the approximation 
is exact at (η̂1(t0 +1), η̂2(t0 +1))′ by definition. As the distance from the centroid increases, the percentage errors also increases. However, 
within the boundary of the cloud of dots, the percentage errors are no greater than 0.4%, suggesting that the accuracy of the quadratic 
approximation is very high over the possible range of (η1(t0 + 1), η2(t0 + 1))′ .

6.5. The effect of risk preferences

Table 8 presents the results of the static hedges implemented using nine different sets of risk preferences. For the sake of completeness, 
we also show in Table 8 the aspired levels of M(i)( �Nt0 ) for i = 1, 2, 3, 4, and the values of M(i)( �Nt0 ) for i = 1, 2, 3, 4 when the annuity 
liability is left unhedged. All values of M(i)( �Nt0 ) shown in Table 8 are calculated with the analytical approximation method discussed in 
Section 5.3.

The following general observations are made. First, the unhedged position leads to the most desirable (smallest) value of M(1)( �Nt0 )

compared to all of the nine hedged positions. This outcome is due to the fact that acquiring any hedging instrument which comes with 
a cost would lead to a larger value of M(1)( �Nt0 ). Second, the aspired levels of M(1)( �Nt0 ), . . . , M(4)( �Nt0 ) are the most desirable compared 
to the values of M(1)( �Nt0 ), . . . , M(4)( �Nt0 ) resulting from the unhedged position and all of the nine hedged positions. This outcome is 
expected, as the aspired level of a moment, by definition, is the best achievable level of the moment when the objectives concerning the 
other moments are not taken into consideration.

Next, we discuss the observations that are made in four specific comparisons.

• Risk Preferences (i) vs. (ii)-(v)
Risk Preference (i) is a simple mean-variance optimization. Compared to Risk Preference (i), Risk Preferences (ii)-(v), all of which 
incorporate skewness, yield more desirable (more negative) values of skewness, at the expense of less desirable values of mean and 
variance.

• Risk Preferences (i) vs. (vi)-(ix)
Compared to Risk Preference (i), Risk Preferences (vi)-(ix), all of which incorporate kurtosis, yield more desirable (lower) values of 
kurtosis, at the expense of less desirable values of mean and variance.

• Risk Preferences (ii)-(v)
The difference among Risk Preferences (ii), (iii), (iv) and (v) lies in the attitude towards skewness. Risk Preference (v) places the 
strongest emphasis on skewness, and not surprisingly, it leads to the most desirable (most negative) value of skewness. Risk Preference 
(ii), in contrast, places the weakest emphasis on skewness, and therefore results in the least desirable value of skewness.

• Risk Preferences (vi) to (ix)
The difference among Risk Preferences (vi), (vii), (viii) and (ix) lies in the attitude towards kurtosis. Risk Preference (ix) places the 
strongest emphasis on kurtosis, and hence it leads to the most desirable (lowest) value of kurtosis. Risk Preference (vi), in contrast, 
places the weakest emphasis on kurtosis, and thus results in the least desirable value of kurtosis.

6.6. Analysis of gains and losses

In this subsection, we perform a gain-and-loss analysis for the static longevity hedge. First, let us consider the hedger’s position at time 
t0 when the hedge is established. At time t0, the value of the hedger’s position is given by

V L(t0) + P H −
4∑

i=1

N j(t0)V H (t0; j, t0) − Pa,

where V L(t0) is the value of the liability at time t0, N j(t0) is the notional amount of the jth q-forward at time t0, V H (t0; j, t0) is the 
time-t0 value of jth q-forward launched at time t0, P H is the price of the hedge and Pa is the annuity premium received. We set

P H =
4∑

N j(t0)V H (t0; j, t0),
i=1
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Fig. 10. Empirical cumulative distributions of the aggregate gain-and-loss and its components when λ1 = λ2 = 1 and λ3 = λ4 = 0.

which represents the total time-t0 cost of the q-forwards, and set Pa = V L(t0) so that Pa represents the actuarially fair annuity premium 
that makes the value of the hedger’s position at time t0 zero.

Then, at time t0 + 1, the hedger realizes a gain or loss that arises from the following three sources:

1. Change in the value of the liability: er V L(t0 + 1) − V L(t0)

2. Changes in the values of q-forwards: 
∑4

j=1 N j(t0)(er V H (t0 + 1; j, t0) − V H (t0; j, t0))

3. Interest earned on the annuity premium collected at time t0 net of the time-t0 cost of the hedge: (er − 1)(Pa − P H )

Note that according to their definitions, both V L and V H represent values measured in time-t0 dollars. As such, in the above, a one-
period accumulation factor is multiplied to V L(t0 + 1) and V H (t0 + 1; j, t0) so that the gains and losses from all sources are measured in 
time-(t0 + 1) dollars consistently.

Aggregating the gains and losses from the three sources, we obtain the aggregate gain-and-loss from time t0 to t0 + 1:

er V L(t0 + 1) − V L(t0) −
4∑

j=1

N j(t0)(er V H (t0 + 1; j, t0) − V H (t0; j, t0)) − (er − 1)(Pa − P H ),

which can be simplified to

er

⎛
⎝V L(t0 + 1) − V L(t0) −

4∑
j=1

N j(t0) (V H (t0 + 1; j, t0) − V H (t0; j, t0))

⎞
⎠ ,

by considering the expression for P H and Pa .
Based on the stochastic mortality model described in Section 6.1, the distribution of the aggregate gain-and-loss from time t0 to 

t0 + 1 is studied empirically. As an example, Fig. 10 shows the empirical cumulative distributions of the aggregate gain-and-loss and its 
components when we set λ1 and λ2 to one and λ3 and λ4 to zero.

To examine the effect of incorporating skewness and kurtosis into the multi-objective function on the distribution of aggregate gain-
and-loss, we compare the standard deviation, Value-at-Risk and tail-Value-at-Risk, between a mean-variance longevity hedge (for which 
λ3 = λ4 = 0) and a mean-variance-skewness-kurtosis longevity hedge (for which λ3 > 0 and/or λ4 > 0). The results are tabulated in 
Table 9,11 from which the following findings are drawn.

First, compared to a mean-variance longevity hedge (for which λ1 = λ2 = 1 and λ3 = λ4 = 0), a longevity hedge that incorporates skew-
ness through a moderate risk preference parameter (say λ3 = 0.5) is more effective in terms of the Value-at-Risk and tail-Value-at-Risk at 
a 99.5% confidence level. However, if the confidence level drops to, say 80%, then incorporating skewness into the multi-objective function 
brings no benefit. This outcome is consistent with the arguments provided in Section 3.3, which explain why incorporating skewness may 
increase (rather than decrease) the Value-at-Risk if the confidence level is low. In addition, if the risk preference parameter for skewness 
becomes excessively large (say λ3 = 5), then the performance of the mean-variance-skewness longevity hedge may deteriorate and may 
not even be as good as that of the mean-variance longevity hedge in terms of 99.5% Value-at-Risk, because an excessively large value of 
λ3 may lead the hedge to over-emphasize on skewness.

For fixed values of λ1, λ2 and λ3 (λ1 = λ2 = 1; λ3 = 0.1), incorporating kurtosis into the multi-objective function through a small 
to moderate risk preference parameter for kurtosis (say, 0.1 ≤ λ4 ≤ 1) results in a marginally better performance in terms of 99.5% 
Value-at-Risk. However, when the value of λ4 is excessively large (say λ4 = 5), the mean-variance-skewness-kurtosis hedge is no longer 
outperforming.

6.7. Comparison with alternative hedging strategies

In this section, we compare our proposed hedge with the following single-objective hedges:

11 The gain-and-loss distribution for the reference hedge has a mean of 0.0005 and a standard deviation of 0.0593. At a 80% confidence level, the Value-at-Risk and 
tail-Value-at-Risk are 0.0437 and 0.0816, respectively; at a 99.5% confidence level, the Value-at-Risk and tail-Value-at-Risk are 0.1821 and 0.2302, respectively.
113



J.S.-H. Li, Y. Liu and W.-S. Chan Insurance: Mathematics and Economics 113 (2023) 96–121
Table 9
Differences (×104) in mean, standard deviation, Value-at-Risk (80% and 99.5% confidence lev-
els), and tail-Value-at-Risk (80% and 99.5% confidence levels) between various hedges and the 
reference mean-variance hedge (with λ1 = λ2 = 1 and λ3 = λ4 = 0). A negative difference in-
dicates that a better performance compared to the reference mean-variance hedge.

Standard Value-at-Risk Tail-Value-at-Risk

Risk Preference Mean Deviation 80% 99.5% 80% 99.5%

Mean-variance-skewness hedges

1-1-0.1-0 −0.07 3.75 4.96 −33.01 −6.38 −79.17
1-1-0.5-0 −0.32 72.09 63.58 −2.45 52.48 −36.84
1-1-1-0 −0.35 85.63 75.78 18.39 65.61 −18.18
1-1-5-0 −0.39 87.99 77.47 24.56 68.55 −10.88

Mean-variance-skewness-kurtosis hedges

1-1-0.1-0.1 −0.07 3.62 4.80 −33.81 −6.41 −78.65
1-1-0.1-0.5 −0.07 3.22 3.72 −35.03 −6.49 −76.98
1-1-0.1-1 −0.07 2.89 3.09 −35.46 −6.53 −75.46
1-1-0.1-5 −0.08 2.03 3.27 −31.57 −6.61 −71.31

Minimization of 99.5% Value-at-Risk

N/A −239.20 79.73 −179.37 −49.91 −141.99 −31.03

Minimization of semi-variance

N/A −0.63 2.65 2.64 −35.37 −6.89 −73.33

Minimization of 99.5% Tail-Value-at-Risk

N/A −0.63 5.95 6.06 −30.52 −5.94 −85.81

• A hedge that minimizes the portfolio’s 99.5% Value-at-Risk:

min
N1,t0 ,...,N4,t0

VaRγ

⎛
⎝ V L(t0 + 1) −

4∑
j=1

(N j,t0 × V H (t0 + 1, j, t0))

∣∣∣∣∣∣Ft0

⎞
⎠ , (12)

where γ = 0.995.
• A hedge that minimizes the portfolio’s semi-variance:

min
N1,t0 ,...,N4,t0

E

(
max

(
0, V P (t0 + 1; �Nt0) − E

(
V P (t0 + 1; �Nt0)

))2
∣∣∣∣Ft0

)
(13)

• A hedge that minimizes the portfolio’s 99.5% tail-Value-at-Risk:

min
N1,t0 ,...,N4,t0

E
(

V P (t0 + 1; �Nt0)

∣∣∣ V P (t0 + 1; �Nt0) > πγ ,Ft0

)
(14)

where γ = 0.995,

V P (t0 + 1; �Nt0) = V L(t0 + 1) −
4∑

j=1

(N j,t0 × V H (t0 + 1, j, t0))

and

πγ = VaRγ

(
V P (t0 + 1; �Nt0)

∣∣∣Ft0

)
.

As with the optimization for our proposed hedging strategy, all of the optimizations above are subject to the following two constraints: 
(1) N j,t0 ≥ 0 (no short-selling); (2) 

∑m
j=1 N j,t0 Ĥ j ≤ 0.5%L̂ (the cost of hedging is less than 0.5% of the expected liability value).

By approximating V L(t0 + 1) and V H (t0 + 1, j, t0) in equation (12) with Vl(t0 + 1) and Vh(t0 + 1, j, t0), respectively, Liu and Li (2021)
provide an analytical solution to the Value-at-Risk minimization problem. A brief summary of the analytical solution is provided in 
Appendix C.

We adopt the analytical solution provided by Liu and Li (2021) to obtain results for the hedge that minimizes 99.5% Value-at-Risk. For 
the other two single-objective hedges, the optimizations are performed using full nested simulations with 20,000 outer scenarios.12 The 
results for the three single-objective hedges are compared against the mean-variance-skewness-kurtosis hedges in Table 9. The following 
observations can be made:

• Minimization of the portfolio’s 99.5% Value-at-Risk leads to an impressively lower 99.5% Value-at-Risk; however, the Value-at-Risk-
minimizing hedge underperforms the mean-variance-skewness-kurtosis hedges (with the range of risk preferences under considera-
tion) in terms of both standard deviation (variance) and 99.5% tail-Value-at-Risk. Notably, the Value-at-Risk-minimizing hedge results 
in a standard deviation that is significantly higher than that of the unhedged position.

12 As a sanity check, we also performed the Value-at-Risk minimization numerically using full nested simulations. It is found that the analytical and numerical results are 
the same up to four significant figures.
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• Similarly, as expected, minimization of the portfolio’s 99.5% tail-Value-at-Risk leads to a lower 99.5% tail-Value-at-Risk, but a higher 
99.5% VaR and standard deviation compared to the mean-variance-skewness-kurtosis hedges (with the range of risk preferences under 
consideration).

• The semi-variance hedge beats the mean-variance-skewness-kurtosis hedge with risk preferences 1, 1, 0.1 and 1 in terms of standard 
deviation, but underperforms in terms of Value-at-Risk and tail-Value-at-Risk at both 80% and 99.5% confidence levels.

To conclude, if the hedger has a very specific hedging objective (e.g., to reduce the portfolio’s Value-at-Risk as much as possible), then 
a hedge that optimizes a single risk measure might be more suited, but the drawback is that other risk measures for the portfolio may be 
compromised. In contrast, if the hedger does not have a specific hedging objective, then the proposed mean-variance-skewness-kurtosis 
hedge is an attractive alternative, as it provides a better all-round performance compared to single-objective hedges.

7. Concluding remarks

In this paper, we develop a mean-variance-skewness-kurtosis approach to optimizing longevity hedges. Compared to mean-variance 
methods in the literature, our proposed approach is more appropriate when the evolution of mortality is driven by non-normal distribu-
tions and the hedger concerns with not only the volatility but also the skewness and/or excess kurtosis of his/her portfolio.

To maximize applicability of our proposed approach, we base our derivations on a general state-space representation that encompasses 
most of the discrete-time stochastic mortality models used in practice. We derive approximate analytical expressions for the moments of 
the values of the hedging instruments and the liability being hedged. These expressions are integrated with a polynomial programming 
goal model, from which a solution to the optimal hedge portfolio is identified.

While a static hedge is implemented in this paper, the proposed hedging strategy may be extended to a dynamic setting with a 
dynamic programming approach. For instance, if we were to develop a dynamic hedge that aims to mitigate the uncertainty associated 
with V P in T ∗ years, for some integer T ∗ > 1, then the optimal value of �Nt (where t0 ≤ t < t0 + T ∗) would depend on the values of 
�Nt+1, �Nt+2, . . . , �Nt0+T ∗−1 (and their risk mitigation effects). A dynamic programming approach would allow us to involve the future hedge 
portfolios in the optimization.

As the focus of this paper is on developing hedging strategies, we have not paid much attention on the pricing problem. Admittedly, 
the q-forward pricing formula we apply (equation (5)) involves variance (of historical mortality improvements) only, and is therefore 
inadequate when higher moments also matter to investors acquiring longevity risk exposures. In future research, it would be interesting 
to investigate how higher moments may be incorporated into q-forward pricing, possibly drawing on the work of Affleck-Graves and 
McDonald (1989) and Sears (1985).

In addition to non-normality, mortality dynamics may also exhibit conditional heteroscedasticity. Recent studies have found that the 
GARCH effect is significant in the mortality dynamics of various national populations (Chai et al., 2013; Gao and Hu, 2009; Wang and Li, 
2016). Another possible avenue of future research is to generalize our proposed hedging strategy to incorporate GARCH effects. Previous 
studies concerning the existence of moments of various GARCH processes (e.g. Ling and McAleer, 2002) are relevant to this suggested 
future work.
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Appendix A. Moments of the assumed multivariate skew-t distribution

In this Appendix, we study the moments of random vectors which follow the multivariate skew-t distribution introduced by Azzalini 
and Capitanio (2003), the distribution we use to model the innovation vector �η(t) in the stochastic mortality models.

As in the main text, we use

�Y ∼ Stn(�ξ,�, �ζ , ν)

to represent an n-dimensional random vector which follows the assumed multivariate skew-t distribution. Recall that �ξ , �, �ζ , and ν
represent the location parameter, the dispersion parameter, the skewness parameter, and the degrees of freedom, respectively.

Azzalini and Capitanio (2003) derived the moments of �Y for �ξ = �0 only, but the moments of �Y for �ξ �= �0 are required in the context 
of this research. In what follows, we first review the moments of �Y when �ξ = �0, and then extend the results of Azzalini and Capitanio 
(2003) to obtain the moments of �Y when �ξ �= �0.

A.1. Moments when �ξ = �0

As pointed out by Azzalini and Capitanio (2003), �Y can be expressed as

�Y = �ξ + W − 1
2 �Z , (15)
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where W = χ2
v /v with χ2

v being a random variable which follows a chi-square distribution with ν degrees of freedom, and Z , which is 
independent of W , is a random vector that follows a skew-normal distribution with a location parameter of �0, a dispersion parameter of 
�, and a skewness parameter of �ζ .

Let E(m)( �X) be the mth moment of a generic random vector �X . When �ξ = �0 we have

E(m)(�Y ) = E(W −m/2)E(m)(�Z),

where

E(W −m/2) = (ν/2)m/2�((ν − m)/2)

�(ν/2)
(16)

and � denotes the gamma function. Using the results of Azzalini and Capitanio (1999) and Genton et al. (2001), the first four moments of 
�Z can be expressed as follows:

E(1)(�Z) = E(�Z) =
√

2

π
�δ, (17)

E(2)(�Z) = E(�Z �Z ′) = �, (18)

E(3)(�Z) = E(�Z �Z ′ ⊗ �Z ′) =
√

2

π

(�δ ⊗ � + vec(�)�δ′ + (In ⊗ �δ)� − �δ ⊗ �δ′ ⊗ �δ
)

(19)

and

E(4)(�Z) = E(�Z �Z ′ ⊗ �Z ′ ⊗ �Z ′) = vec(�)′ ⊗ � + �(In ⊗ vec(�)) + �In(vec(�)′ ⊗ In)(In ⊗ U), (20)

where

�δ = ��̄�ζ(
1 + �ζ ′�̄�ζ

)1/2
,

�̄ is the corresponding correlation matrix of �,13 In is an n-by-n identity matrix, and U is an n2-by-n2 matrix representing the permutation 
matrix associated with an n-by-n matrix.14

A.2. Moments when �ξ �= �0

We now extend the results of Azzalini and Capitanio (2003) to obtain the first four moments of �Y when �ξ �= �0.

A.2.1. The first moment
It follows from equation (15) that the first moment of �Y for �ξ �= �0 can be expressed as

E(1)(�Y ) = �ξ + E(W −1/2)E(�Z).

Substituting the expressions of E(W −1/2) and E(�Z) into equations (16) and (17), we obtain

E(1)(�Y ) = �ξ +
√

ν

π

�((ν − 1)/2)

�(ν/2)
�δ. (21)

A.2.2. The second moment
Using equation (15), we can express the second moment of �Y for �ξ �= �0 as follows:

E(2)(�Y )

= E
[
(�Y − E(�Y ))(�Y − E(�Y ))′

]
= E

[(
W −1/2 �Z − E(W −1/2)E(�Z)

)(
W −1/2 �Z − E(W −1/2)E(�Z)

)′]

= E
[

W −1 �Z �Z ′ − W −1/2E(W −1/2)E(�Z)�Z ′ − W −1/2E(W −1/2)�ZE(�Z)′ + (E(W −1/2))2E(�Z)E(�Z)′
]

= E(W −1)E(�Z �Z ′) − (E(W −1/2))2E(�Z)E(�Z)′.

Substituting the expressions for E(W −1/2), E(W −1), E(�Z) and E(�Z �Z ′) into equations (16), (17) and (18), we obtain

E(2)(�Y ) = ν

ν − 2
� − ν

π

(
�(ν−1

2 )

�( ν
2 )

)2
��̄�ζ �ζ ′�̄�

1 + �ζ ′�̄�ζ . (22)

13 The (i, j)th element of �̄ is calculated as ωi, j/
√

ωi,iω j, j , where ωi, j denotes the (i, j)th element in �.
14 The permutation matrix associated with a generic matrix X is the matrix U that satisfies vec(X′) = Uvec(X).
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A.2.3. The third moment
Using equation (15), we can express the third moment of �Y for �ξ �= �0 as follows:

E(3)
(�Y − E(�Y )

)
= E

[
(�Y − E(�Y ))(�Y − E(�Y ))′ ⊗ (�Y − E(�Y ))′

]
= E

[(
W − 1

2 �Z − E(W − 1
2 )E(�Z)

)(
W − 1

2 �Z − E(W − 1
2 )E(�Z)

)′ ⊗
(

W − 1
2 �Z − E(W − 1

2 )E(�Z)
)′]

= E
[(

W −1 �Z �Z ′ − W − 1
2 E(W − 1

2 )E(�Z)�Z ′ − W − 1
2 E(W − 1

2 )�ZE(�Z)′ + (E(W − 1
2 ))2E(�Z)E(�Z)′

)
⊗

(
W − 1

2 �Z − E(W − 1
2 )E(�Z)

)′]

= E
[

W − 3
2 �Z �Z ′ ⊗ �Z ′ − W −1E(V − 1

2 )
(

E(�Z)�Z ′ ⊗ �Z ′ + �ZE(�Z)′ ⊗ �Z ′ + �Z �Z ′ ⊗ E(�Z)′
)

+W − 1
2

(
E(W − 1

2 )
)2 (

E(�Z)E(�Z)′ ⊗ �Z ′ + E(�Z)�Z ′ ⊗ E(�Z)′ + �ZE(�Z)′ ⊗ E(�Z)′
)

−
(

E(W − 1
2 )

)3
E(�Z)E(�Z)′ ⊗ E(�Z)′

]

= E(W − 3
2 )E(�Z �Z ′ ⊗ �Z ′) + 2

(
E(W − 1

2 )
)3 (

E(�Z)E(�Z)′ ⊗ E(�Z)′
)

−E(W −1)E(W − 1
2 )

(
E
(

E(�Z)�Z ′ ⊗ �Z ′) + E
(�ZE(�Z)′ ⊗ �Z ′) + E

(�Z �Z ′ ⊗ E(�Z)′
))

.

Noting that

E
(

E(�Z)�Z ′ ⊗ �Z ′) = E(�Z) ⊗ vec(E(�Z �Z ′))′,

E
(�ZE(�Z)′ ⊗ �Z ′) = E(�Z ′) ⊗ E(�Z �Z ′)

and

E
(�Z �Z ′ ⊗ E(�Z)′

)
= E(�Z �Z ′) ⊗ E(�Z)′,

we have the following simplified expression for the third moment of �Y when �ξ �= �0:

E(3)
(�Y − E(�Y )

)
= E(W − 3

2 )E(�Z �Z ′ ⊗ �Z ′) + 2
(

E(W − 1
2 )

)3 (
E(�Z)E(�Z)′ ⊗ E(�Z)′

)
−E(W −1)E(W − 1

2 )
(

E(�Z) ⊗ vec(E(�Z �Z ′))′ + E(�Z ′) ⊗ E(�Z �Z ′) + E(�Z �Z ′) ⊗ E(�Z)′
)

.

(23)

In the above expression, E(W − 1
2 ), E(W −1) and E(W − 3

2 ) can be obtained using equation (16), whereas E(�Z), E(�Z �Z ′) and E(�Z �Z ′ ⊗ �Z ′) can 
be obtained using equations (17), (18) and (19), respectively.

A.2.4. The fourth moment
The derivation for the fourth moment is similar to that for the third moment, and is therefore not shown for the sake of space. The 

fourth moment of �Y for �ξ �= �0 is presented below:

E(4)
(�Y − E(�Y )

)
= E

[
(�Y − E(�Y ))(�Y − E(�Y ))′ ⊗ (�Y − E(�Y ))′ ⊗ (�Y − E(�Y ))′

]
= E(W −2)E(4)(�Z) − E(W − 3

2 )E(W − 1
2 )K1 + E(W −1)(E(W − 1

2 ))2 K2 − 3(E(W − 1
2 ))4 K3,

(24)

where

K1 = E(�Z)vec(E(3)(�Z))′ + E(�Z)′ ⊗ E(3)(�Z) + E(3)(�Z)
(

Id ⊗ E(�Z)′ ⊗ Id

)
+ E(3)(�Z) ⊗ E(�Z)′,

K2 = E(�Z)E(�Z)′ ⊗ vec(E(�Z �Z ′))′ +
(

E(�Z)E(�Z)′
)

(E(�Z ′ ⊗ Id ⊗ �Z ′)) + vec(E(�Z)E(�Z)′)′ ⊗ E(�Z �Z ′)

+E(�Z) ⊗ vec(E(�Z �Z ′))′ ⊗ E(�Z)′ + E(�Z �Z ′)
(

E(�Z)′ ⊗ Id ⊗ E(�Z)′
)

+ E(�Z �Z ′) ⊗ E(�Z)′ ⊗ E(�Z)′

and

K3 = E(�Z)E(�Z)′ ⊗ E(�Z)′ ⊗ E(�Z)′.

In the above expressions, E(W − 1
2 ), E(W −1), E(W − 3

2 ) and E(W −2) can be obtained using equation (16), whereas E(�Z), E(�Z �Z ′), E(�Z (3)) and 
E(�Z (4)) can be obtained using equations (17) to (20), respectively.
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Appendix B. Partial derivatives of L and H( j, t)

In this appendix, we derive the partial derivatives of L and H( j, t), j = 1, . . . , m, with respect to �η(t + 1). These partial derivatives, 
which are expressed in terms of the parameters in the general state-space representation of stochastic mortality models, are utilized in 
the approximation of Mt , Vt , St and Kt as discussed in Section 5.3.

B.1. The partial derivative of L with respect to �η(t + 1)

Recall that

L =
T L∑

u=1

(
e−ru

u∏
s=1

p̃(xL + s − 1, t0 + s)

)
.

It is important to note that p̃(xL + s −1, t0 + s) in the expression above does not depend on �η(t +1) for any t0 + s < t +1 (i.e., s < t −t0 +1). 
Accordingly, the first partial derivative of L with respect to �η(t + 1) can be written as

∂L

∂ �η(t + 1)
=

T L∑
u=t−t0+1

e−ru ∂

∂ �η(t + 1)

(
u∏

s=1

p̃(xL + s − 1, t0 + s)

)
,

for t = t0, t0 + 1, . . . , t0 + T L − 1, where

∂

∂ �η(t + 1)

(
u∏

s=1

p̃(xL + s − 1, t0 + s)

)

=
u∑

s=t−t0+1

⎛
⎜⎜⎝∂ p̃(xL + s − 1, t0 + s)

∂ �η(t + 1)
×

u∏
w=1
w �=s

p̃(xL + w − 1, t0 + w)

⎞
⎟⎟⎠

=
u∑

s=t−t0+1

⎛
⎜⎜⎝∂ p̃(xL + s − 1, t0 + s)

∂ ỹ(xL + s − 1, t0 + s)
× ∂ ỹ(xL + s − 1, t0 + s)

∂ �η(t + 1)
×

u∏
w=1
w �=s

p̃(xL + w − 1, t0 + w)

⎞
⎟⎟⎠ .

(25)

Here, y(x, t) is the age-x-related element in the observation vector �y(t) in the general state space representation of stochastic mortality 
models, and ỹ(x, t) is the value of y(x, t) when the observation error ε(x, t) is excluded (being set to zero).

Equation (25) involves the partial derivative of p̃(xL + s − 1, t0 + s) with respect to ỹ(xL + s − 1, t0 + s) and the partial derivative of 
ỹ(xL + s − 1, t0 + s) with respect to �η(t + 1). The former derivative depends on the specification of the observations in the model. If 
y(x, t) = ln(m(x, t)) (e.g., the Lee-Carter model), then

∂ p̃(xL + s − 1, t0 + s)

∂ ỹ(xL + s − 1, t0 + s)
= (−1) × p̃(xL + s − 1, t0 + s) × m̃(xL + s − 1, t0 + s),

and if y(x, t) = ln(q(x, t)/(1 − q(x, t))) (e.g., the Cairns-Blake-Dowd model), then

∂ p̃(xL + s − 1, t0 + s)

∂ ỹ(xL + s − 1, t0 + s)
= (−1) × p̃(xL + s − 1, t0 + s) × q̃(xL + s − 1, t0 + s).

The latter derivative can be derived by first expressing ỹ(xL + s − 1, t0 + s) in terms of the parameters in the general state-space mortality 
model as

ỹ(xL + s − 1, t0 + s) = d(xL + s − 1) + B(xL + s − 1, ·) �α(t0 + s), (26)

where B(x, ·) and d(x) represent the row of B and the element of �d that are related to age x, respectively, and then rewriting the state 
vector �α(t0 + s) in terms of the innovation vectors from time t + 1 to t0 + s as

�α(t0 + s) = At0+s−t �α(t) +
(t0+s−t∑

w=1

At0+s−t−w
(
�c + �η(t + w)

))
. (27)

These two steps allow us to express ỹ(xL + s − 1, t0 + s) as follows:

ỹt(xL + s − 1, t0 + s) = h + B(xL + s − 1, ·)
(t0+s−t∑

w=1

At0+s−t−w �η(t + w)

)
, (28)

for some constant h that is free of �η(t + 1), which in turn implies that

∂ ỹ(xL + s − 1, t0 + s)

∂ �η(t + 1)
=

∂B(xL + s − 1, ·)
(t0+s−t∑

w=1
At0+s−t−w �η(t + w)

)
∂ �η(t + 1)

= (
B(xL + s − 1, ·)At0+s−t−1)′

,

for s ≥ t − t0 + 1.
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B.2. The partial derivative of H( j, t) with respect to �η(t + 1)

Recall that

H( j, t) = e−r×(t−t0+T j)(q f (x j, t + T j) − q̃(x j, t + T j)),

for j = 1, . . . , m. Using the chain rule, the partial derivative of H( j, t) with respect to �η(t + 1) can be expanded as follows:

∂ H( j, t)

∂ �η(t + 1)
= ∂

∂ �η(t + 1)

(
e−r×(t−t0+T j)

(
q f (x j, t + T j) − q̃(x j, t + T j)

))
= −e−r×(t−t0+T j) × ∂q̃(x j, t + T j)

∂ �η(t + 1)

= −e−r×(t−t0+T j) × ∂q̃(x j, t + T j)

∂ ỹ(x j, t + T j)
× ∂ ỹ(x j, t + T j)

∂ �η(t + 1)
.

(29)

In the above expression, the partial derivative of q̃(x j, t + T j) with respect to ỹ(x j, t + T j) depends on the specification of the observations 
in the model. We have

∂q̃(x j, t + T j)

∂ ỹ(x j, t + T j)
= p̃(x j, t + T j) × m̃(x j, t + T j)

if y(x, t) = ln(m(x, t)) and

∂q̃(x j, t + T j)

∂ ỹ(x j, t + T j)
= p̃(x j, t + T j) × q̃(x j, t + T j)

if y(x, t) = ln(q(x, t)/(1 − q(x, t)). Similar to the steps described in equations (26) to (28), we can express ỹ(x j, t + T j) in terms of the 
innovation vectors from time t + 1 to t + T j , and then differentiate the expression with respect to �η(t + 1) to obtain

∂ ỹ(x j, t + T j)

�η(t + 1)
=

∂

(
B(x j, ·)

T j∑
w=1

AT j−w �η(t + w)

)

∂ �η(t + 1)
=

(
B(x j, ·)AT j−1

)′
.

Appendix C. Value-at-risk minimization

In this appendix, we describe the analytical solution provided by Liu and Li (2021) that solves the Value-at-Risk minimization pre-
scribed in expression (12). Following the set-up established in the main text, we consider minimizing the Value-at-Risk of the hedged 
position 1-year after time t0 when the hedge is established. The objective function can be expressed as follows:

min
N1,t0 ,...,N4,t0

VaRγ

⎛
⎝ V L(t0 + 1) −

4∑
j=1

(N j,t0 × V H (t0 + 1, j, t0))

∣∣∣∣∣∣Ft0

⎞
⎠ (30)

When the innovation vector follows a multivariate skew-t distribution, the optimization above is not straightforward to solve. To 
overcome this challenge, Liu and Li (2021) approximate the values of the liability and the hedge instruments using a first-order Taylor 
expansion, so that the objective function is rewritten as

min
N1,t0 ,...,N4,t0

VaRγ

⎛
⎝ Vl(t0 + 1) −

4∑
j=1

(N j,t0 × Vh(t0 + 1, j, t0))

∣∣∣∣∣∣Ft0

⎞
⎠ , (31)

where Vl(t0 + 1) and Vh(t0 + 1, j, t0) are the first-order Taylor approximations of V L(t0 + 1) and V H (t0 + 1, j, t0), respectively. Using the 
expressions of Vl(t0 + 1) and Vh(t0 + 1, j, t0) provided in Section 5.2, the (approximate) value of the hedge portfolio can be expressed as

Vl(t0 + 1) −
4∑

j=1
(N j,t0 × Vh(t0 + 1, j, t0))

= L̂ −
4∑

j=1
N j,t0 × Ĥ j +

n∑
k=1

(
Dk(0, t0 + 1) −

4∑
j=1

N j,t0 × Dk( j, t0 + 1)

)
× ηk(t0 + 1)

= L̂ −
4∑

j=1
N j,t0 × Ĥ j + �D ′

t0+1 �ηt0+1

, (32)

where �ηt0+1 is the innovation vector at time t0 + 1, which follows an n-dimensional skew-t distribution Stn(�ξ, �, �ζ , ν), and

�Dt0+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1(0, t0 + 1) −
4∑

j=1
N j,t0 × D1( j, t0 + 1)

...

Dn(0, t0 + 1) −
4∑

N j,t0 × Dn( j, t0 + 1)

⎞
⎟⎟⎟⎟⎟⎟⎠
j=1
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is the vector of the first-order partial derivatives of the hedged position with respect to the innovations.
Equation (32) is essentially a linear transformation of a multivariate skew-t distribution, which according to Azzalini and Capitanio 

(1999 and 2003), follows a skew-t distribution with modified parameters. In Equation (32), L̂ − ∑4
j=1 N j,t0 × Ĥ j is a constant which 

represents the expectation of the (approximate) hedged position and

�D ′
t0+1 �ηt0+1 ∼ St1(�ξ∗,�∗, ζ ∗, ν), (33)

where

�ξ∗ = �D ′
t0+1

�ξ
�∗ = �Dt0+1� �D ′

t0+1

and

ζ ∗ = (�∗)−1 �D ′
t0+1ωζ√

1 + ζ ′(ω − ω �Dt0+1(ω∗)−1 �D ′
t0+1ω)ζ

.

The optimization problem is then converted into finding the smallest 100γ -th percentile of a skew-t distribution, subject to the two 
constraints mentioned in Section 4. The constrained optimization can be solved using the “SN” package in R.
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